

Lecture Notes in Bioinformatics 4175
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Philipp Bücher Bernard M.E. Moret (Eds.)

Algorithms
in Bioinformatics

6th International Workshop, WABI 2006
Zurich, Switzerland, September 11-13, 2006
Proceedings

13

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Philipp Bücher
Ecole Polytechnique Fédérale de Lausanne, Switzerland
E-mail: Philipp.Bucher@isrec.unil.ch

Bernard M.E. Moret
Ecole Polytechnique Fédérale de Lausanne, Switzerland
E-mail: bernard.moret@epfl.ch

Library of Congress Control Number: 2006932026

CR Subject Classification (1998): F.1, F.2.2, E.1, G.1-3, J.3

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-39583-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-39583-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11851561 06/3142 5 4 3 2 1 0

Preface

We are very pleased to present the proceedings of the Sixth Workshop on Algo-
rithms in Bioinformatics (WABI 2006), which took place in Zürich on September
11-13, 2006, under the auspices of the International Society for Computational
Biology (ISCB), the European Association for Theoretical Computer Science
(EATCS), and the Eidgenössische Technische Hochschule Zürich (ETHZ).

The Workshop on Algorithms in Bioinformatics covers research on all aspects
of algorithmic work in bioinformatics. The emphasis is on discrete algorithms
that address important problems in molecular biology, that are founded on sound
models, that are computationally efficient, and that have been implemented and
tested in simulations and on real datasets. The goal is to present recent research
results, including significant work-in-progress, and to identify and explore direc-
tions of future research. Specific topics of interest include, but are not limited to:

– Exact, approximate, and machine-learning algorithms for genomics, sequence
analysis, gene and signal recognition, alignment, molecular evolution, pop-
ulation genetics and nucleotide polymorphism, structure determination or
prediction, gene expression and gene networks, proteomics, functional ge-
nomics, and drug design.

– Methods, software and dataset repositories for the development and testing
of such algorithms and their underlying models.

– High-performance approaches to computationally hard problems in bioinfor-
matics, particularly optimization problems.

A major goal of the workshop is to bring together researchers spanning the range
from abstract algorithm design to biological dataset analysis, so as to enable a
dialogue between application specialists and algorithm designers, mediated by al-
gorithm engineers and high-performance computing specialists. We believe that
such a dialogue is necessary for the progress of computational biology, inasmuch
as application specialists cannot analyze their datasets without fast and robust
algorithms and, conversely, algorithm designers cannot produce useful algorithms
without being conversant with the problems faced by biologists.

Part of this mix has been achieved for all six WABI events to date by collo-
cating WABI with the European Symposium on Algorithms (ESA), along with
other occasional conferences or workshops, so as to form the interdisciplinary
scientific meeting known as ALGO. This year, ALGO 2006 comprised the 14th
European Symposium on Algorithms (ESA 2006), the 6th Workshop on Algo-
rithms in Bioinformatics (WABI 2006), the 4th Workshop on Approximation
and Online Algorithms (WAOA 2006), the 2nd International Workshop on Pa-
rameterized and Exact Computation (IWPEC 2006), and the 6th Workshop on
Algorithmic Methods and Models for Optimization of Railways (ATMOS 2006).

We received 100 submissions in response to our call for WABI 2006 and were
able to accept 36 of them, ranging from mathematical tools to experimental

VI Preface

studies of approximation algorithms and reports on significant computational
analyses. Numerous biological problems are dealt with, including genetic map-
ping, sequence alignment and sequence analysis, phylogeny, comparative ge-
nomics, and protein structure. This year was the first in which WABI also called
for machine-learning approaches along with combinatorial optimization, and we
are delighted to feature five contributions from this area.

We would like to thank all authors for submitting their work to the workshop
and all the presenters and attendees for their participation. We were particularly
fortunate in enlisting the help of a very distinguished panel of researchers for our
program committee, which undoubtedly accounts for the large number of sub-
missions and the high quality of the presentations. Our heartfelt thanks go to all:

Vincent Berry (U. Montpellier)
Rita Casadio (U. di Bologna)
Phoebe Chen (Deakin U.)
Nadia El-Mabrouk (U. Montréal)
Raffaele Giancarlo (U. di Palermo)
David Gilbert (U. Glasgow)
Roderic Guigo (U. Pompeu Fabra)
Vasant Honavar (Iowa State U.)
Daniel Huson (U. Tübingen)
Jens Lagergren (KTH Stockholm)
C. Randal Linder (U. Texas Austin)
Joao Meidanis (U. Campinas)
Satoru Miyano (Tokyo U.)
Gene W. Myers (HHMI Janelia Farm)
Luay Nakhleh (Rice U.)
Cedric Notredame (CNRS Marseilles)
Sven Rahmann (U. Bielefeld)
Knut Reinert (Freie U. Berlin)
Mikhail Roytberg (Russian Academy of Sciences)
Marie-France Sagot (U. Claude Bernard)
David Sankoff (U. Ottawa)
Joao Setubal (U. Campinas)
Adam Siepel (Cornell U.)
Jijun Tang (U. South Carolina)
Olga Troyanskaya (Princeton U.)
Alfonso Valencia (CNB-CSIC)
Jaak Vilo (Egeen Inc.)
Tandy Warnow (U. Texas Austin)
Lusheng Wang (City U. Hong Kong)
Tiffani Williams (Texas A&M U.)
Louxin Zhang (National U. Singapore)

Preface VII

We were fortunate to attract Ron Shamir, from Tel Aviv University, to ad-
dress the joint conferences on topics in computational biomedicine, along with
other distinguished speakers lecturing in more classical algorithmic areas: Erik
Demaine (Massachusetts Institute of Technology), Lisa Fleischer (IBM T.J. Wat-
son Research Labs), László Lovász (Eőtvős Loránd University and Microsoft
Research), and Kurt Mehlhorn (Max-Planck-Institute Saarbrücken).

Last but not least, we thank Michael Hoffman and his colleagues Angelika
Steger, Emo Welzl, and Peter Widmayer, all at ETHZ, for doing a superb job
of organizing the joint conferences.

We hope that you will consider contributing to future WABI events, through
a submission or by participating in the workshop.

September 2006 Phillip Bücher and Bernard M.E. Moret
WABI’06 Program Co-Chairs

Table of Contents

Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible
DNA Repair Mechanisms . 1

Markus T. Friberg, Pedro Gonnet, Yves Barral,
Nicol N. Schraudolph, Gaston H. Gonnet

Decomposing Metabolomic Isotope Patterns . 12
Sebastian Böcker, Matthias C. Letzel, Zsuzsanna Lipták,
Anton Pervukhin

A Method to Design Standard HMMs with Desired Length Distribution
for Biological Sequence Analysis . 24

Hongmei Zhu, Jiaxin Wang, Zehong Yang, Yixu Song

Efficient Model-Based Clustering for LC-MS Data . 32
Marta �Luksza, Bogus�law Kluge, Jerzy Ostrowski,
Jakub Karczmarski, Anna Gambin

A Bayesian Algorithm for Reconstructing Two-Component
Signaling Networks . 44

Lukas Burger, Erik van Nimwegen

Linear-Time Haplotype Inference on Pedigrees
Without Recombinations . 56

M.Y. Chan, Wun-Tat Chan, Francis Y.L. Chin, Stanley P.Y. Fung,
Ming-Yang Kao

Phylogenetic Network Inferences Through Efficient Haplotyping 68
Yinglei Song, Chunmei Liu, Russell L. Malmberg, Liming Cai

Beaches of Islands of Tractability: Algorithms for Parsimony
and Minimum Perfect Phylogeny Haplotyping Problems 80

Leo van Iersel, Judith Keijsper, Steven Kelk, Leen Stougie

On the Complexity of SNP Block Partitioning Under the Perfect
Phylogeny Model . 92

Jens Gramm, Tzvika Hartman, Till Nierhoff, Roded Sharan,
Till Tantau

How Many Transcripts Does It Take to Reconstruct the Splice Graph? . . . 103
Paul Jenkins, Rune Lyngsø, Jotun Hein

X Table of Contents

Multiple Structure Alignment and Consensus Identification
for Proteins . 115

Jieping Ye, Ivaylo Ilinkin, Ravi Janardan, Adam Isom

Procrastination Leads to Efficient Filtration for Local
Multiple Alignment . 126

Aaron E. Darling, Todd J. Treangen, Louxin Zhang, Carla Kuiken,
Xavier Messeguer, Nicole T. Perna

Controlling Size When Aligning Multiple Genomic Sequences
with Duplications . 138

Minmei Hou, Piotr Berman, Louxin Zhang, Webb Miller

Reducing Distortion in Phylogenetic Networks . 150
Daniel H. Huson, Mike A. Steel, Jim Whitfield

Imputing Supertrees and Supernetworks from Quartets 162
Barbara Hollan, Glenn Conner, Katharina T. Huber,
Vincent Moulton

A Unifying View of Genome Rearrangements . 163
Anne Bergeron, Julia Mixtacki, Jens Stoye

Efficient Sampling of Transpositions and Inverted Transpositions
for Bayesian MCMC . 174

István Miklós, Timothy Brooks Paige, Péter Ligeti

Alignment with Non-overlapping Inversions in O(n3)-Time 186
Augusto F. Vellozo, Carlos E.R. Alves, Alair Pereira do Lago

Accelerating Motif Discovery: Motif Matching on Parallel Hardware 197
Geir Kjetil Sandve, Magnar Nedland, Øyvind Bø Syrstad,
Lars Andreas Eidsheim, Osman Abul, Finn Drabløs

Segmenting Motifs in Protein-Protein Interface Surfaces 207
Jeff M. Phillips, Johannes Rudolph, Pankaj K. Agarwal

Protein Side-Chain Placement Through MAP Estimation
and Problem-Size Reduction . 219

Eun-Jong Hong, Tomás Lozano-Pérez

On the Complexity of the Crossing Contact Map Pattern
Matching Problem . 231

Shuai Cheng Li, Ming Li

Table of Contents XI

A Fuzzy Dynamic Programming Approach to Predict RNA
Secondary Structure . 242

Dandan Song, Zhidong Deng

Landscape Analysis for Protein-Folding Simulation in the H-P Model 252
Kathleen Steinhöfel, Alexandros Skaliotis, Andreas A. Albrecht

Rapid ab initio RNA Folding Including Pseudoknots Via Graph
Tree Decomposition . 262

Jizhen Zhao, Russell L. Malmberg, Liming Cai

Flux-Based vs. Topology-Based Similarity of Metabolic Genes 274
Oleg Rokhlenko, Tomer Shlomi, Roded Sharan, Eytan Ruppin,
Ron Y. Pinter

Combinatorial Methods for Disease Association Search
and Susceptibility Prediction . 286

Dumitru Brinza, Alexander Zelikovsky

Integer Linear Programs for Discovering Approximate Gene Clusters 298
Sven Rahmann, Gunnar W. Klau

Approximation Algorithms for Bi-clustering Problems 310
Lusheng Wang, Yu Lin, Xiaowen Liu

Improving the Layout of Oligonucleotide Microarrays:
Pivot Partitioning . 321

Sérgio A. de Carvalho Jr., Sven Rahmann

Accelerating the Computation of Elementary Modes Using
Pattern Trees . 333

Marco Terzer, Jörg Stelling

A Linear-Time Algorithm for Studying Genetic Variation 344
Nikola Stojanovic, Piotr Berman

New Constructive Heuristics for DNA Sequencing by Hybridization 355
Christian Blum, Mateu Yábar Vallès

Optimal Probing Patterns for Sequencing by Hybridization 366
Dekel Tsur

Gapped Permutation Patterns for Comparative Genomics 376
Laxmi Parida

XII Table of Contents

Segmentation with an Isochore Distribution . 388
Miklós Csűrös, Ming-Te Cheng, Andreas Grimm,
Amine Halawani, Perrine Landreau

Author Index . 401

Measures of Codon Bias in Yeast, the tRNA Pairing
Index and Possible DNA Repair Mechanisms

Markus T. Friberg1, Pedro Gonnet1, Yves Barral2,
Nicol N. Schraudolph3,4, and Gaston H. Gonnet1

1 Institute of Computational Science, ETH Zurich, 8092 Zurich, Switzerland
2 Institute of Biochemistry, Department of Biology, ETH Zurich, Switzerland

3 Statistical Machine Learning, National ICT Australia, Canberra ACT 2601, Australia
4 RSISE, Australian National University, Canberra ACT 0200, Australia

Abstract. Protein translation is a rapid and accurate process, which has been
optimized by evolution. Recently, it has been shown that tRNA reusage influ-
ences translation speed. We present the tRNA Pairing Index (TPI), a novel index
to measure the degree of tRNA reusage in any gene. We describe two variants
of the index, how to combine various such indices to a single one and an effi-
cient algorithm for their computation. A statistical analysis of gene expression
groups indicate that cell cycle genes have high TPI. This result is independent of
other biases like GC content and codon bias. Furthermore, we find an additional
unexpected codon bias that seems related to a context sensitive DNA repair.

1 Introduction

Protein translation is a rapid and accurate process, despite the need to discriminate be-
tween many possible incoming and competing tRNAs. One can assume that the process
has been optimized by evolution. It has been shown that tRNA availability is both a
limiting step and a regulatory parameter during translation [1,2]. Recently, through an
experiment with synthesized GFP genes, it was shown that tRNA reusage (codon or-
der) influences translation speed in yeast [3]. Here we describe the tRNA Pairing Index
(TPI), an index that measures the degree of tRNA reusage in any gene.

By a statistical analysis of the TPI and gene expression, we show that genes that
change their expression level rapidly (and thus require the most rapid translation) have
a (statistically significant) higher TPI. Specifically, genes involved in cell cycle and
DNA damage have a high TPI. These genes are regulated in the most dynamic man-
ner, i.e. they are most rapidly turned on and off in response to intra- or extra-cellular
activities.

The TPI distribution over all yeast coding sequences is biased towards positive val-
ues, indicating that there is a general tendency of tRNA reusage in the yeast genome.

Codon bias has been extensively studied previously [4,5,6,7,8,9,10]. However, to the
best of our knowledge, the problem of measuring tRNA reusage in a gene has not been
addressed before. The general analysis of codon autocorrelation suffers from the bias
that may be induced by different base frequencies in different parts of the genome. It is
known that some parts of the genome are GC-rich while other parts are GC-poor. Such

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 1–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 M.T. Friberg et al.

long-stretched biases induce an autocorrelation in the codons, which could be signifi-
cant. Our first version of the TPI can measure autocorrelation without being affected by
this kind of bias.

2 Methods

The TPI is an index which is computed for each protein and measures the autocorrela-
tion (positive or negative) of its codons. Depending on how the background distribution
is chosen, it is possible to make TPI completely independent of the frequencies of the
amino acids, tRNAs, codons or bases, so that it will not suffer from any of the common
sources of bias.

We measure the autocorrelation independently of everything else by analyzing the
usage of tRNA in each amino acid of a protein as a combinatorial problem on symbols.
For example, suppose that we are considering an amino acid which occurs 7 times in
the protein in question and can be translated by two different tRNAs, A and B (e.g. 3
A’s and 4 B’s). We will extract the tRNAs from our sequence and represent them as a
sequence of 7 symbols, e.g. AABABBB.

Highly autocorrelated cases are AAABBBB and BBBBAAA. A highly negatively
autocorrelated case is BABABAB. This autocorrelation can be quantified by the number
of identical pairs in the sequence or, conversely, by the number of changes C as we read
from left to right. Notice that for a sequence of length n, the number of identical pairs
plus the number of changes is n− 1. The mathematics is completely analogous for the
number of pairs or number of changes. We call these breaks in the sequences changes,
with the thought that if a tRNA molecule is doing the translation for one particular
amino acid, when these breaks happen, this tRNA will have to be changed for another
molecule. The first two examples have 1 change each, the last example has 6 changes.
The TPI measures how high the actual number of pairs are, or how low C is, compared
to all possible permutations of the sequence of tRNAs.

We present two different background distributions: one (TPI1) based on codon fre-
quencies given by the actual gene/genome under study, i.e. all possible orders consid-
ered equally likely (2.1) and another one (TPI2) based on variable codon frequencies
extracted from the entire genome (2.3).

2.1 TPI1: Constant Codon Frequencies

Computation of the Probability of the Number of Changes. We will now describe
the function to compute the probability and cumulative distribution of a given number
of changes x.

It is easy to observe that the probability of the number of changes C(x, n1, n2, ..., nk)
does not depend on what the symbols are, but rather on how many symbols there are
of each kind (n1, n2, ..., nk). C is a (symmetric) function of the number of each kind
of different symbols. It is difficult to write a recursion based on C, so instead we will
base its computation on another function, called Cr, which does the recursive part of
the computation. Cr(x, n1, n2, ..., nk) assumes that we are not at the beginning of the
sequence, but rather that the last symbol observed is known (Fig. 1). To identify this
known symbol (all symbols are otherwise equivalent), we will make it the first of the

Measures of Codon Bias in Yeast 3

(probability of x changes with 4 and 3 symbols)

C(x,4,3)

A B A B A

A B A B AA

Cr(x,4,3)

(probability of x changes with 4 and 3 when

 the previous symbol is of the first kind)

A

A B

B

Fig. 1. C and Cr

arguments. Our function Cr assumes that it is called with a symbol of the first class
preceding the rest of the symbols (Fig. 1). We explain Cr for k = 2 symbols in detail.

Cr(x, n1, n2) =

⎧⎨⎩
0 if n1 < 0 or n2 < 0 or x < 0 or x > n1 + n2

1 if n1 = n2 = 0 (x must be 0)
1

n1+n2
(n1Cr(x, n1 − 1, n2) + n2Cr(x − 1, n2 − 1, n1))

(1)

The first symbol is either from the class of n1 (no change) or from the class of n2, in
which case the preceding symbol now is of the second class and we invert the argu-
ments: Cr(x − 1, n2 − 1, n1).

The extension of this function to higher k is simple. Supplementary material (http://
www.biorecipes.com/TPI/appendix/Cr.M) shows a production quality version of this
procedure which takes into account more refined border conditions. C(x, n1, n2) can
be expressed in two forms in terms of Cr. First, if we allow an arbitrary number of
symbols we use

C(x, n1, n2) = Cr(x + 1, [0, n1, n2]) (2)

i.e., we create an artificial first symbol (of which we have 0 left) and allow for one more
change. Else we can expand based on the first symbol:

C(x, n1, n2) =
n1

n1 + n2
Cr(x, n1 − 1, n2) +

n2

n1 + n2
Cr(x, n2 − 1, n1) (3)

The code for Cr as written above, is exponential. We can use dynamic programming,
or we could use something equivalent to option remember in Maple [11] to make it
polynomial in the product of the ni.

To estimate how rare a given number of changes is, we need to compute its cumula-
tive distribution. Since the distribution is over the integers, we will take the cumulative
distribution which adds one half of the probability at the point.

Ccum(x, n1, n2, ..., nk) =
x−1∑
i=0

C(i, n1, n2, ..., nk) +
1
2
C(x, n1, n2, ..., nk) (4)

Our TPI is 1− 2Ccum, which is more intuitive to use than Ccum.

4 M.T. Friberg et al.

Expected Values and Moments of the Number of Changes. The expected value of
the number of changes can be expressed in terms of the symmetric functions S1 and S2

on the arguments:

μ′
1 =

∞∑
i=1

i× C(i, n1, n2, ..., nk) =
S2

1 − S2

S1
where Si =

k∑
j=1

ni
j (5)

The derivation of this formula is not trivial in its general form (for an arbitrary k).
However if we observe that all the probabilities are sums of binomial coefficients, then
we can conclude that the result (expected value or higher moments) must be a poly-
nomial expression divided an appropriate descending factorial. Since all the moments
are symmetric in all the arguments, the moments must be functions of the symmet-
ric polynomials derived from the ni. Hence by symbolic interpolation we can deter-
mine all the moments in a much easier (and safer) way. Of interest are the expected
value and the variance. This is because we will attempt a normal approximation to the
distribution.

μ2 =
∞∑

i=1

(i− μ′
1)

2C(i, n1, n2, ..., nk) =
S1S2 − S3

1 − 2S1S3 + S2S
2
1 + S2

2

S2
1(S1 − 1)

(6)

Unfortunately, despite the simplicity of the formulas resulting from this approach, they
do not resolve our problem completely. The normal approximation gives a good ap-
proximation of the cumulative distribution around the average (for large values of S1)
and very good approximations when min(ni) is high. However, it gives poor approxi-
mations at the tails when some of the ni are small, which is an important case.

Computing the Distribution of C in Practice. The recursion in Cr, although sim-
ple, swaps its arguments, which makes it almost impossible to handle with the standard
techniques. Even dynamic programming becomes very difficult to express. In this sec-
tion we find a mechanism to rewrite the recursion in a way that the argument order is
maintained.

Since the function is totally symmetric in its arguments (and Cr is totally symmetric
in its arguments but the first) we can sort the arguments in increasing order guarantee-
ing a time of O(n1n2....nk). This makes the recursion marginally acceptable for real
problems (for yeast k ≤ 4 and for most other genomes k ≤ 5). This ordering is partly
ruined by the swapping of arguments in the recursion (1). Each recursive call to Cr uses
a different argument as second argument.

To resolve this problem we find recursions which (while maybe more complicated)
do not jumble the arguments. We can illustrate this by doing the transformation on the
simplest recursion, k = 2. For further simplicity, we will use the auxiliary function

H(x, n1, n2) = Cr(x, n1, n2)
(
n1 + n2

n1

)
. As expected, the recursion on H(x, n1, n2) is

significantly simpler.

H(x, n1, n2) = H(x, n1 − 1, n2) + H(x− 1, n2 − 1, n1) (7)

We now apply this formula to the shifted arguments

Measures of Codon Bias in Yeast 5

−H(x, n1, n2 − 1) = −H(x, n1 − 1, n2 − 1)−H(x− 1, n2 − 2, n1) (8)

H(x− 1, n2 − 1, n1) = H(x− 1, n2 − 2, n1) + H(x− 2, n1 − 1, n2 − 1) (9)

Adding these three equations results in

H(x, n1, n2) = H(x, n1 − 1, n2) + H(x, n1, n2 − 1)−H(x, n1 − 1, n2 − 1)+
H(x− 2, n1 − 1, n2 − 1)

(10)
Notice that we have managed to obtain a recursion for which all the arguments
(n1, n2) are in the same order. The new recursion with four terms instead of two
is a bit more complicated, but this is an insignificant cost when we observe that in
this form it is easy to write a recursive program to compute it. The computation can
be done over the space of n1xn2 for increasing x, having to keep two copies of the
older H .

Transformations for up to k = 5 were obtained by doing a Knuth-Bendix style
elimination procedure among all shifts of the basic recurrence. This was done in Maple
and required some careful and extensive manipulations. Table 1 shows the summary of
the results.In the supplementary material, http://www.biorecipes.com/TPI/
appendix/recursions, we show the recursions for k = 2 to k = 5. With these
recursions it was possible to write a C program that can compute all the TPI values for a
genome like yeast in about 6 hours. Previous attempts failed after weeks of computing
in very large machines.

Table 1. Recursions

k terms eq. used max shift x max shift n1, n2, ...

2 4 3 -2 -1
3 12 37 -3 -1
4 32 657 -4 -1
5 80 19125 -5 -1

Analytic Solution for two Symbols. The case with two symbols can be resolved ex-
plicitly (unfortunately, we were not able to find closed forms for higher k, and conjec-
ture that no simple forms exist). Theorem:

H(x, n1, n2) =
(
n1

�x
2 �

)(
n2 − 1
�x−1

2 �

)
(11)

This is easily proved by plugging the recursion that defines H(x, n1, n2) and separating
the case when x is even and when x is odd. For example if x is even then x = 2w and
the recursion becomes:(

n1

w

)(
n2 − 1
w − 1

)
=
(
n1 − 1

w

)(
n2 − 1
w − 1

)
+
(
n2 − 1
w − 1

)(
n1 − 1
w − 1

)
(12)

6 M.T. Friberg et al.

By removing the common factor

(
n2 − 1
w − 1

)
we get

(
n1

w

)
=
(
n1 − 1

w

)(
n1 − 1
w − 1

)
(13)

which is a well-known identity of binomial coefficients [12].

2.2 Scale of the TPI

The previous subsection showed how to compute the cumulative distribution which is
needed to compute the TPI. These formulas were applied to each individual amino acid.
Now comes the question of how to express, with a single index, the joint distribution
for all amino acids.

We use convolution of the cumulative distributions, since the measure is the same for
each individual amino acid. To facilitate our understanding,we use TPI1 = 1−2Ccum to
scale this convolved cumulative distribution to−1..1, so that we can talk about negative
TPI (more tRNA changes than expected) and positive TPI (fewer changes than expected).

2.3 TPI2: Variable Codon Frequencies

Some highly expressed genes (e.g., YGR192C) use basically only one tRNA for each
amino acid. Although the number of tRNA changes will be practically zero, so will the
distribution of possible changes. Hence, the TPI1 as computed above will be neutral
(close to 0) for these genes. This is not desirable, since these highly expressed genes
are highly optimized, and have almost the maximum tRNA reusage possible. In some
sense, TPI1 is too independent of the codon usage distribution.

The problem occurs because we have assumed that the choice of codon in a gene is
constant, and only consider different orderings of these codons. To resolve this problem,
we suggest an alternative TPI2, where only the choice of amino acids (not codons) is
fixed. The test statistic is the same as for TPI1 (number of tRNA changes). However, the
background distribution is estimated from the set of all possible genes resulting in the
same protein, where the contribution from each gene is proportional to the probabilities
of its codons according to the global codon frequencies in the genome.

For the TPI2 we will assume that the codon frequency for each amino acid is given.
It can be the global distribution or some localized (extracted from a group of genes)
distribution. Contrary to the case for the TPI1, we have an efficient method of computing
the exact distribution (although not a closed form).

We use a similar notation, C(x, n,P) will give us the probability that we find x
changes in a sequence of n symbols which appear with probabilitiesP = (p1, p2, ..., pk).
Similarly Ci(x, n,P) will denote the probability of x changes among the next n symbols
when the last symbol is the ith.

C(x, n,P) =
k∑

i=1

piCi(x, n− 1,P) (14)

Ci(x, 0,P) = δx0 (15)

Measures of Codon Bias in Yeast 7

Ci(x, n,P) = piCi(x, n− 1,P) +
∑
k �=i

pkCk(x− 1, n− 1,P) (16)

This recursion is fundamentally simpler than the ones for TPI1, as it is in two variables
(P is a constant). Furthermore, we can compute the functions for increasing n requiring
space O(nk) and time O(n2k). The computation of TPI2 for all yeast genes is done in
approximately 10 minutes on a modern desktop computer.

The moments of C(x, n,P) have simple expressions, but in this case we can compute
the exact distribution for all practical cases, so there is no point in using them.

3 Results

In a recent experiment with synthesized GFP genes, it was shown that genes with
maximum tRNA reusage were translated faster than genes with minimum tRNA reusage
[3]. To complement that biochemistry experiment of one gene, a bioinformatics
analysis is provided here. We examine whether different gene groups have higher or
lower average TPI than what can be expected by chance. Gene groups from expres-
sion connection, http://db.yeastgenome.org/cgi-bin/expression/
expressionConnection.pl were used to evaluate TPI1 and TPI2 (Table 2). For
comparison, we also included the CAI index [5].

Table 2. Average TPI’s (scale: -1..1) and codon adaptation index (CAI) for groups of genes that
are up-regulated in different experiments. Consider as an example the first row: average TPI’s
and CAI were computed for the group of genes with at least 5-fold up-regulation when sub-
jected to glucose limitation. The same was done for 100000 groups of (equally many) randomly
picked genes, and p-values were computed by comparing the real average TPI’s and CAI to their
respective distribution of random values.

Experiment avg(TPI1) p(TPI1) avg(TPI2) p(TPI2) avg(CAI) p(CAI)
glucose limitation 5x 0.142 0.463 0.512 0.0108 0.240 0.0285
sporulation 20x 0.028 0.942 -0.045 0.9831 0.140 0.9987
diauxic shift 10x 0.215 0.222 0.428 0.0062 0.209 0.0583
DNA damage 10x 0.048 0.861 0.466 0.00001 0.223 0.0015
alpha-factor over time 80x 0.144 0.337 -0.037 0.9992 0.138 1.0000
alpha-factor (var. conc.) 20x 0.192 0.148 0.173 0.207 0.157 0.8808
stress response 50x 0.163 0.251 0.236 0.0267 0.174 0.3849
histone depletion 50x 0.140 0.440 0.207 0.1681 0.170 0.4894
zinc levels 10x 0.198 0.236 0.461 0.0015 0.246 0.0017
phosphate pathway 10x 0.328 0.048 0.215 0.2410 0.180 0.3233
cell cycle 5x 0.175 0.153 0.310 0.00017 0.194 0.0152
cell cycle 10x 0.365 0.013 0.465 0.0026 0.21 0.0900

Overall, TPI1 does not show a clear correlation with gene expression. The exception
is for cell cycle genes, a group that requires fast translation. Cell cycle genes that in-
crease expression at least 10-fold have an average TPI1 of 0.365, which is significant

8 M.T. Friberg et al.

with p-value 0.013. This is an indication that there is a selection for high tRNA reusage
in cell cycle genes.

TPI2, which is also correlated with CAI, shows a clear correlation with several gene
expression groups. Genes from the cell cycle, zinc levels, DNA damage, diauxic shift
and glucose limitation experiments have a significantly high average TPI2. This is an
additional indication for high tRNA reusage in cell cycle genes.

4 Pairwise Codon Bias Suggests Context-Dependent DNA Repair
in Saccharomyces Cerevisiae

We observe a very significant bias in the selection of synonymous codons in the coding
DNA of S. cerevisiae. The bias appears in DNA, its reverse complement and in each
amino acid individually which strongly suggests that it is neither a translational nor
RNA effect, but a feature of the DNA. Isolating this bias from other possible sources,
we conjecture that this is caused by a context dependent DNA mismatch correction
mechanism.

Given the complete set of coding sequences of the S. cerevisiae genome (release 36
of the S. cerevisiae genome from EMBL [13]), we can calculate the observed frequen-
cies of amino acids (fa

obs(A)) and codons (f c
obs(C)) as well as the observed pairwise

amino acid (faa
obs(A1, A2)) and codon frequencies (f cc

obs(C1, C2)). Using faa
obs and f c

obs,
we can calculate the expected pairwise codon frequencies f cc

exp under the hypothesis of
independent codon pairing.

We compute the difference between the observed value and the expected value, in
units of a standard deviation and get differences of up to 25 standard deviations. If we
group the codon pairs according to the nucleotides at the frame border, that is, for a
codon pair x1x2x3 and y1y2y3, the nucleotides x3 and y1, we get even more significant
results (up to 83.10 standard deviations, Table 3).

Table 3. Difference in standard deviations between expected and observed counts of pairwise
codons grouped by the nucleotides at the frame border

x3|y1 A C G T

A 19.74 -4.68 -23.46 5.79
C 77.90 -11.21 -61.09 -19.50
G -0.67 30.52 2.84 -29.46
T -83.10 -11.20 65.06 31.50

A look at the most biased codon pair patterns (Table 4) quickly reveals that the
reverse complement of each pattern is similarly biased. This indicates that whatever
is causing the observed bias is probably not dependent on the reading-sense of the
sequences, since it also appears in the reverse-complement strand in identical form.

Furthermore, if we re-compute the values in Table 3 for each amino acid with more
than one codon, using the third nucleotide in each codon for the position x3 and the

Measures of Codon Bias in Yeast 9

Table 4. The 20 most significantly biased patterns and their reverse complement. The indented
patterns are subsets of an already listed pattern. The bias is given in standard deviations.

Pattern bias Reverse bias

T A -83.10 self
C A 77.90 **T G** 65.06

T AA* -70.59 *TT A -69.96

*TT A** -69.96 **T AA* -70.59
T G 65.06 **C A** 77.90

C AA* 62.39 *TT G 36.10

TT AA -62.02 self

Pattern bias Reverse bias

C G -61.09 self
*TC A** 59.07 **T GA* 25.51
*CC A** 54.69 **T GG* 32.07

T A*A -52.78 T*T A -45.06
T A*G -52.61 C*T A -51.43
T AG* -51.57 *CT A -48.28
C*T A** -51.43 **T A*G -52.61

observed and expected pairwise codon frequencies for each amino acid, the resulting
biases (although not all pairs are present for each amino acid) match those in Table 3.

In summary, the pairwise codon bias observed seems to be caused by some mecha-
nism that operates directionally on DNA since it is independent of the coding strand and
of the individual amino acids. This excludes as possible mechanisms post-translational
events.

We postulate that the bias is caused by a context sensitive DNA mismatch correction
mechanism (CSCM). Although DNA replication is in general a very faithful process,
errors in the form of mismatches can arise. The most common form of mismatches,
and the only type we will consider here, are the purine·pyrimidine mismatches C·A and
T·G. Such a mismatch can occur at any given position in the sequence. To avoid DNA
packing and transcription problems, such mismatches need to be corrected to either T·A
or C·G. In organisms which do not mark the original strand during DNA replication
(e.g. S. cerevisiae), corrections could be made according to:

– a static, context insensitive correction rule, always correcting to either T·A or C·G.
Such a mechanism would create an obvious T·A or C·G bias.

– a random correction scheme, which would not produce a C·G-bias, however, it
would not produce the observed codon pair frequency bias either.

In the absence of a strong C·G bias we assume that a more refined context sensitive
mechanism exists. We also assume that such a mechanism would produce better cor-
rections than the static or random models. For our study we will define a good correction
as a correction that does not alter the primary structure of the sequence, since it is the
only type of error we can quantify.

We define a CSCM as a scheme in which the mismatch correction depends on the
mismatch itself and its two neighbouring nucleotides. Considering mismatches in a
strand-independent (symmetric) correction scheme, we define the local context as the
nucleotides upstream and downstream of the pyrimidine in the mismatch. We shall call
these nucleotides x and y. We represent the CSCM as a Table in which for each x and
y an A·C or T·G mismatch is corrected to either A·T or C·G (Table 5).

We define the quality of a CSCM as the percentage of correct corrections (PCC).
This is the relative number of mismatch corrections which do not induce a change in
the primary structure of the sequence or the insertion or deletion of a stop-codon (note
that mutations to synonymous codons are accepted).

10 M.T. Friberg et al.

Table 5. A·C portion of the CSCM. The T·G portion is shown to be identical for optimal correc-
tion schemes.

x/y A C G T

A A·T A·T A·T A·T
C C·G A·T A·T A·T
G C·G A·T A·T A·T
T C·G A·T A·T A·T

The optimal CSCM (i.e. the CSCM with the highest PCC of 74.18% as opposed
to 67.12% for random corrections) for the S. cerevisiae genome is shown in Table 5.
Due to its rather simple structure, we can define, for each nucleotide, protected and
vulnerable contexts:

– A preceded by T is vulnerable, since after correction it would change to G.
– C followed by A is protected, since after correction it would remain a C.
– G preceded by T is protected, since after correction it would remain a G.
– T followed by A is vulnerable, since after correction it would change to C.

These four contexts are exactly the four most biased nucleotide combinations observed
over the frame border (Table 3). Note that the observed bias has very little influence
on the choice of the optimal CSCM: the optimal CSCM computed over the expected
pairwise codon frequencies is identical. The optimal CSCM could therefore create
the observed codon bias.

5 Conclusions

We have defined and presented two versions of the TPI. The first one assumes constant
codon frequencies (codon shuffling). This makes it insensitive to codon bias and differ-
ent GC content in different parts of the genome. Still, gene expression analysis indicates
that tRNA reusage is important to cell cycle genes. The advantage of TPI1 is that it is
constructed to be independent of codon usage, GC content etc, which indicates that the
observed signal indeed is due to tRNA reusage.

The second TPI version only assumes constant amino acid sequence, and uses the
global codon frequencies to estimate the background distribution. The result is an index
that is more similar to the codon adaptation index (CAI). Also, overall TPI2 p-values
correlate quite well with CAI. However, for cell cycle regulated genes, the p-value is
much more significant than for CAI. This is an additional indication that tRNA reusage
is important for cell cycle genes. Also, the DNA damage experiments show much higher
correlation with TPI than with CAI.

The two versions of TPI complement each other. TPI1 shows that tRNA reusage ex-
ists, since it measures tRNA reusage independently of other biases. However, assuming
a constant codon population in a gene reduces the measurable tRNA reusage signal.
Naturally, if tRNA reusage is a way to optimize translation speed, one can assume that
evolution can optimize codon bias for this purpose. By not assuming a constant codon

Measures of Codon Bias in Yeast 11

population in a gene, TPI2 measures tRNA reusage more accurately as it happens in the
cell, which is confirmed by the TPI2 p-values for the cell cycle genes.

In addition to the tRNA reusage bias, we observe an additional unexpected codon
bias in S. cerevisiae. Isolating this bias from other possible sources, we conjecture that
this is caused by a context dependent DNA mismatch correction mechanism.

References

1. Elf, J., Nilsson, D., Tenson, T., Ehrenberg, M.: Selective charging of tRNA isoacceptors
explains patterns of codon usage. Science 300 (2003) 1718–1722

2. Dittmar, K.A., Sorensen, M.A., Elf, J., Ehrenberg, M., Pan, T.: Selective charging of tRNA
isoacceptors induced by amino-acid starvation. EMBO Rep. 6 (2005) 151–157

3. Barral, Y., Faty, M., von Rohr, P., Schraudolph, N.N., Friberg, M.T., Roth, A.C., Gonnet,
P., Cannarozzi, G.M., Gonnet, G.H.: tRNA recycling in translation and its influence on the
dynamics of gene expression in yeast. in preparation (2006)

4. Bennetzen, J.L., Hall, B.D.: Codon selection in yeast. J. Biol. Chem. 257 (1982) 3026–3031
5. Sharp, P.M., Li, W.H.: The codon adaptation index–a measure of directional synonymous

codon usage bias, and its potential applications. Nucleic Acids Res. 15 (1987) 1281–1295
6. Wright, F.: The ’effective number of codons’ used in a gene. Gene 87 (1990) 23–29
7. Boycheva, S., Chkodrov, G., Ivanov, I.: Codon pairs in the genome of Escherichia coli.

Bioinformatics 19 (2003) 987–998
8. Carbone, A., Zinovyev, A., Kepes, F.: Codon adaptation index as a measure of dominating

codon bias. Bioinformatics 19 (2003) 2005–2015
9. Greenbaum, D., Colangelo, C., Williams, K., Gerstein, M.: Comparing protein abundance

and mRNA expression levels on a genomic scale. Genome Biol. 4 (2003) 117
10. Friberg, M., von Rohr, P., Gonnet, G.: Limitations of codon adaptation index and other

coding DNA-based features for prediction of protein expression in saccharomyces cerevisiae.
Yeast 21 (2004) 1083–1093

11. Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B., Watt, S.M.: Maple
V Language Reference Manual. Springer-Verlag (1991)

12. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions, chapter 24.1.1. Dover,
New York (1972)

13. Kulikova, T., Aldebert, P., Althorpe, N., Baker, W., Bates, K., Browne, P., van den Broek, A.,
Cochrane, G., Duggan, K., Eberhardt, R., Faruque, N., Garcia-Pastor, M., Harte, N., Kanz,
C., Leinonen, R., Lin, Q., Lombard, V., Lopez, R., Mancuso, R., McHale, M., Nardone, F.,
Silventoinen, V., Stoehr, P., Stoesser, G., Tuli, M.A., Tzouvara, K., Vaughan, R., Wu, D.,
Zhu, W., Apweiler, R.: The EMBL nucleotide sequence database. Nucleic Acids Res. 32
(2004) D27–D30

Decomposing Metabolomic Isotope Patterns

Sebastian Böcker1, Matthias C. Letzel2,
Zsuzsanna Lipták3, and Anton Pervukhin3

1 Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, 07743 Jena, Germany

boecker@minet.uni-jena.de
2 Organische Chemie I, Fakultät für Chemie, Universität Bielefeld, PF 100 131, 33501

Bielefeld, Germany
matthias.letzel@uni-bielefeld.de

3 AG Genominformatik, Technische Fakultät, Universität Bielefeld, PF 100 131,
33501 Bielefeld, Germany

zsuzsa, apervukh@CeBiTec.uni-bielefeld.de

Abstract. We present a method for determining the sum formula of
metabolites solely from their mass and isotope pattern. Metabolites, such
as sugars or lipids, participate in almost all cellular processes, but the
majority still remains uncharacterized. Our input is a measured isotope
pattern from a high resolution mass spectrometer, and we want to find
those molecules that best match this pattern.

Determination of the sum formula is a crucial step in the identifica-
tion of an unknown metabolite, as it reduces its possible structures to a
hopefully manageable set. Our method is computationally efficient, and
first results on experimental data indicate good identification rates for
chemical compounds up to 700 Dalton.

Above 1000 Dalton, the number of molecules with a certain mass
increases rapidly. To efficiently analyze mass spectra of such molecules,
we define several additive invariants extracted from the input and then
propose to solve a joint decomposition problem.

1 Introduction

High resolution mass spectrometry (HR-MS) allows determining the mass of
sample molecules with very high accuracy (up to 10−3 Dalton), and has become
one preferred method of analyzing metabolites. As with most analysis techniques
in the life sciences, not one but millions of copies of the same molecule are needed.
The output of a mass spectrometer, after preprocessing, consists of peaks that
ideally correspond to the masses of the sample molecules and their abundance,
i.e., the number of sample molecules with this mass. This brings into play the
natural isotopic distributions of the elements: Several peaks in the output cor-
respond to the same type of sample molecule, reflecting its isotope pattern. In
this paper, we make use of this isotope pattern to identify the sample molecule
by determining its sum formula, i.e., the number of atoms of each element.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 12–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Decomposing Metabolomic Isotope Patterns 13

The term “metabolite” is usually restricted to small molecules that are in-
termediates and products of the metabolism. These small molecules partici-
pate in almost all cellular processes such as signal transduction, stress response,
catabolism, or anabolism. It is widely accepted that every species hosts several
thousand metabolites; however, the overwhelming majority of these metabo-
lites is yet uncharacterized. The majority of metabolites have mass below 1000
Dalton: 96.5 % of sum formulas in the KEGG LIGAND database fall into this
mass range [6]. Today, metabolites are usually identified through fragmenting the
metabolite using electron impact ionization, and subsequent database lookup in
a chemical compound library [9]. This method is limited to identifying metabo-
lites and chemical compounds that have been included in some library.

Our input is a list of masses M0, . . . , MK with intensities f0, . . . , fK , nor-
malized such that

∑
i fi = 1. We assume that these have been extracted from a

high-resolution mass spectrum in a preprocessing step, and that they correspond
to the isotope pattern of a sample molecule. Note that, for molecular mixtures,
separating isotopic peaks that belong to different molecules is mostly trivial in
this case. Our goal then is to find the molecule, or rather its sum formula, whose
isotope pattern best matches the input. In the following, we use “molecule” and
“sum formula” interchangeably.

To tackle this problem, we proceed as follows: First, we compute all sum
formulas that share one or more features (such as monoisotopic mass) with
the input mass spectrum. Next, for every such candidate molecule we simulate
its isotope pattern, and match and rank it against the input isotope pattern.
As the number of candidate molecules is usually large, it is essential to find
methods for fast simulation and ranking of isotope patterns. The two studies
reported in literature for identifying molecules from their isotope patterns [4,10],
both proceed in the same manner but focus on the experimental side of the
problem.1

Contributions. First, we show how to use integer decomposition techniques
introduced in [2] for decomposing real valued molecule masses in Sec. 3, with
large improvements over näıve methods that are currently best known for this
problem [3]. Second, we present a method for rapid computation of isotope dis-
tributions and mean masses of isotope peaks in Sec. 4, improving on best-known
results in [12]. Fast simulation of isotope patterns is vital due to the large search
space. Third, we show how to rapidly match and rank such simulated spectra
against the measured spectrum in Sec. 5. In Sec. 7, we report on the application
of our method to high resolution mass spectra.

Fourth, we present methods to further reduce the search space: The number of
molecules with a certain monoisotopic mass increases rapidly for large masses [2].
To this end, we introduce the problem of jointly decomposing a set of queries,
comparable to the multiple integer knapsack problem [7]. These queries are not
the input masses M0, . . . , MK , but other values derived from the input such
as intensities or average mass. We introduce a method to efficiently generate
1 We stress that this method cannot be used as-is to identify peptides or amino acid

compositions, because even short peptides usually have non-unique sum formulas.

14 S. Böcker et al.

all solutions of a multiple integer knapsack problem in Sec. 6, and our simu-
lations show how this technique efficiently cuts down decomposition runtimes,
see Sec. 7.

2 Isotopes, Isotope Species, and Isotope Patterns

Atoms are composed of electrons, protons, and neutrons. The number of protons
(the atomic number) defines what element the atom is. The elements most abun-
dant in living beings are hydrogen (symbol H) with atomic number 1, carbon
(C, 6), nitrogen (N, 7), oxygen (O, 8), phosphor (P, 15), and sulfur (S, 16). The
number of neutrons, on the other hand, can vary: Atoms with the same number
of protons but different numbers of neutrons are called isotopes of the element.
Each of these isotopes occurs in nature with a certain abundance. The super-
script preceding the symbol denotes the mass number of the atom: the number
of protons plus the number of neutrons.

The mass of an atom is measured in Dalton (Da), which is defined as one
twelfth of the mass of a 12C isotope. An atom’s mass is roughly but not exactly
equal to its mass number, the difference being due to the binding energy in the
atom’s nucleus. The masses of the different isotopes and their abundance are
known up to very high precision [1]; for example, 1H has mass 1.007825Da with
abundance 99.985%, and 2H mass 2.014102Da with abundance 0.015%.

The nominal mass (also called nucleon number) of a molecule is the sum of
protons and neutrons of the constituting atoms. The mass of the molecule is the
sum of masses of these atoms. Clearly, nominal mass and mass depend on the
isotopes the molecule consists of, thus on the isotope species of the molecule. The
isotope species where each atom is the isotope with the lowest nominal mass is
called monoisotopic. Likewise, the mass of the monoisotopic species is called the
monoisotopic mass of the molecule.

The number of distinct isotope species for a molecule with iH hydrogen, iC
carbon, iN nitrogen, iO oxygen, iP phosphor, and iS sulfur atoms is (iC +1)(iH +
1)(iN + 1)

(
iO+2

2

)(
iS+3

3

)
. This follows because for an element E with r isotope

types, a molecule El consisting of l atoms of the element has
(
l+r−1
r−1

)
different

isotope species. The probability that a certain isotope species occurs can be
computed by multiplying the probabilities of the underlying isotopes.

For each element E ∈ Σ we define two discrete random variables, denoted
XE and YE , representing the mass and the mass number, respectively. For ex-
ample, XC with state space {12, 13.003355} and YC with state space {12, 13}
and P(XC = 12) = P(YC = 12) = 0.98890, P(XC = 13.003355) = P(YC = 13) =
0.01110 are the random variables of carbon. Given a molecule consisting of l
atoms, we assign to the ith atom, i = 1, . . . , l, two random variables Xi and
Yi, where Xi ∼ XE and Yi ∼ YE , with E being the corresponding element.
Now we can represent the molecule’s mass distribution by the random variable
X := X1 + . . . + Xl, and its nominal mass distribution, or isotopic distribution,
by Y := Y1 + . . .+Yl. Note that X and Y are correlated, since XE can be viewed
as a function of YE and E.

Decomposing Metabolomic Isotope Patterns 15

In an ideal mass spectrum, normalized peak intensities correspond to the iso-
topic distribution of the molecule. For ease of exposition, the peak at monoisotopic
mass is also called monoisotopic, the following peaks are referred to as +1, +2,
. . . peaks.What is the mass of such a superposition peak? It is reasonable to assume
that its mass is the mean mass of all isotope species that add to its intensity [12]:
For a molecule with monoisotopic nominal mass N , let X = X1 + . . . + Xl be the
mass distribution and Y = Y1 + · · · + Yl be the isotopic distribution. The mean
peak mass of the +k peak is then mk = E(X | Y = N +k). We refer to the isotopic
distribution together with the mean peak masses as the molecule’s isotope pattern.

3 Decompositions of Real Value Numbers

We want to find all molecules with (monoisotopic) mass in the interval [l, u] ⊆ R

where l := M0−ε and u := M0+ε for some measurement inaccuracy ε. Formally,
we search for all solutions of the integer knapsack equation [7]

a1c1 + a2c2 + · · ·+ ancn ∈ [l, u] (1)

where aj are real-valued monoisotopic masses of elements satisfying aj ≥ 0. We
search for all solution vectors c = (c1, . . . , cn) such that all cj are non-negative
integers. We may assume a1 < a2 < · · · < an.

A straightforward solution is to generate all vectors c with c1 = 0 and∑
j ajcj ≤ u, and next to test if there is some c1 ≥ 0 such that

∑
j ajcj ∈ [l, u].

This results in O(mn−1) runtime where m := M0/a2. Alternatively, we can
compute all potential decompositions up to some upper bound U during pre-
processing, sort them with respect to mass and use binary search; this results
in O(Un) space requirement. These approaches are unfavorable in theoretical
complexity as well as in practice: For the alphabet CHNOPS there exist more
than 7 · 108 sum formulas with mass below 1000Da.

In case of integer coefficients, one can use dynamic programming to compute
all solutions efficiently, following the line of thought of [7, Sec. 8.3]. The main
disadvantage of this approach is the rather large memory requirement. An al-
ternative method for finding all solutions is given in [2], using a table of size
O(na1), see Sec. 6 for more details. Every solution is constructed in time O(na1)
independent of the input l, u. Regarding the application of decomposing molecule
masses, the latter approach uses only 1/15 of memory and shows better runtimes.

Reconsider the original integer knapsack problem with real-valued coefficients.
Choosing a blowup factor b ∈ R, corresponding to precision 1/b, we can round
coefficients by φ(a) := 	ba
, so a′

j := φ(aj) and l′ := φ(l), u′ := φ(u) form a Dio-
phantine equation. Now, certain solutions c of the integer coefficient knapsack
are no solutions of the real-valued coefficient knapsack, and vice versa. We can
easily sort out false positive solutions checking (1), resulting in additional run-
time. But first, we concentrate on the more intriguing problem of false negative
solutions that are missed by the integer coefficient knapsack.

Clearly
∑

j ajcj ≥ l implies
∑

j a′
jcj ≥ l′ since all a′

j are integer. We have to
increase the upper bound u′ to guarantee that all solutions of (1) are generated.

16 S. Böcker et al.

We define relative rounding errors Δj = Δj(b) := �baj�−baj

aj
for j = 1, . . . , n,

where 0 ≤ Δj ≤ 1
aj

, and set Δ = Δ(b) := max{Δj}. If c satisfies
∑

j ajcj ≤ u

then
∑

j a′
jcj ≤ bu + Δu: Clearly,

∑
j a′

jcj ≤ bu +
∑

j(a
′
j − baj)cj and our claim

follows from

0 ≤
∑

j

(a′
j − baj)cj =

∑
j

	baj
 − baj

aj
ajcj ≤

∑
j

Δjajcj ≤ Δ
∑

j

ajcj ≤ Δu.

One can easily check that this bound is tight. So, we re-define the integer interval
by u′ := �bu + Δu�. Then, we have to decompose Δu integers in addition to the
(u− l)b integers we expect without rounding errors. We stress that the runtime
of this approach is dominated by the number of decompositions of these integers,
and not by the number of integers itself.

As an example, consider the alphabet CHNOPS and blowup factor b = 105,
then Δ = ΔH = 0.492936, so for M0 = 1000 we have to decompose an additional
492 integers.

4 Simulating Isotope Patterns

We first observe that for CHNOPS, all resulting molecules have isotopic distri-
butions that decrease rapidly with increasing mass. In particular, we can restrict
ourselves to computing the first K non-zero values of the distribution, for rather
small K such as K = 10. For example, for the molecule C166 with nominal mass
1992, the intensities of +10, +11, . . . peaks sum up to less than 0.00003.

The atoms hydrogen, carbon, and nitrogen have only two (natural) isotopes.
Thus, the isotopic distribution of a molecule El consisting of l identical atoms
of type E with E ∈ {H, C, N} follows a binomial distribution: Let qk denote
the probability that El has nominal mass N + k, where N is the monoisotopic
nominal mass of El. Then, qk =

(
l
k

)
pl−k(1−p)k where p is the probability of the

monoisotopic isotope. The values of the qk can be computed iteratively, since
qk+1 = l−k

k+1 ·
1−p

p qk for k ≥ 0, thus computation time is O(K).
Where an element E has r > 2 isotopes (such as oxygen and sulfur), the

isotopic distribution of El can be computed as follows: Let pi for i = 0, . . . , r
denote the probability of occurrence of the ith isotope. Then, the probability that
El has nominal mass N +k is

∑(l
l0,l1,...,lr

)
·
∏r

i=0 pli
i , where the sum runs over all

l0, . . . , lr ≥ 0 satisfying
∑r

i=0 li = l and
∑r

i=1 i · li = k [5]. The tuples (l0, . . . , lr)
satisfying

∑
i i · li are the integer partitions of k into at most r parts, which

can be computed recursively with a greedy approach. However, the number of
partitions grows rapidly, at least with a polynomial in k of degree r − 1.

4.1 Folding Isotope Patterns

Given two discrete random variables Y and Y ′ with state spaces Ω, Ω′ ⊆ N, we
can compute the distribution of the random variable Z := Y +Y ′ by folding the
distributions, P(Z = N) =

∑
k P(Y = k) ·P(Y ′ = N −k). If we restrict ourselves

Decomposing Metabolomic Isotope Patterns 17

to the first K values of this sum, we can compute this distribution in time
O(K2). Kubinyi [8] suggests to compute the isotopic distributions of oxygen Ol

and sulfur Sl by successive folding of the respective distribution: Using a Russian
multiplication scheme for the folding, this results in an algorithm with runtime
O(K2 log l). In applications, we do not compute these distributions on the fly
but during preprocessing, for all l ≤ L fixed. This results in O(KL) memory
for every such element, where L is small: 64 oxygen atoms already have mass of
about 1024Da, exceeding the relevant mass range. For molecules consisting of
different elements, we first compute the isotopic distributions of the individual
elements, and then combine these distributions by folding in O(|Σ| ·K2) time.

We now come to the more challenging problem of efficiently computing the
mean peak masses of a distribution. Doing so using the definition mk = E(X |
Y = N + k) is highly inefficient, because we have to sum up over all isotope
species, so pruning strategies have been developed that lead to a loss of accuracy
[12, 14]. But there exists a simple recurrence for computing these masses analo-
gous to the folding of distributions, generalizing and improving on results in [12]:

Let Y = Y1 + · · · + Yl and Y ′ = Y ′
1 + · · · + Y ′

L be isotopic distributions of
two molecules with monoisotopic nominal masses N and N ′, respectively. Let
pk := P(Y = N + k) and qk := P(Y ′ = N ′ + k) denote the corresponding
probabilities, mk and m′

k the mean peak masses of the +k peaks. Consider the
random variable Z = Y + Y ′ with monoisotopic nominal mass Ñ = N + N ′.

Theorem 1. The mean peak mass m̃k of the +k peak of the random variable
Z = Y + Y ′ can be computed as:

m̃k =
1∑k

j=0 pjqk−j

·
k∑

j=0

pjqk−j

(
mj + m′

k−j

)
(2)

Note that
∑k

j=0 pjqk−j = P(Z = Ñ + k). Since by independence, P(Y1 =
N1, . . . , Yl = Nl) =

∏
i P(Yi = Ni), the theorem follows by rearranging sum-

mands, we omit the formal proof.
The theorem allows us to “fold” mean peak masses of two distributions to

compute the mean peak masses of their sum. This implies that we can compute
mean peak masses as efficiently as the distribution itself. This improves on the
previously best known method [12], replacing the linear runtime dependence on
the number of atoms by its logarithm.

5 Scoring Candidate Molecules

We want to discriminate between (tens of thousands of) candidate molecules
generated by decomposing the monoisotopic mass. To this end, we compare the
simulated isotopic distribution with the measured peaks. Matching peak pairs
between the spectra is trivial for this application.

Zhang et al. [15] and Zhang and Chait [16] suggest to use Bayesian Statistics
to evaluate mass spectra matches:

18 S. Böcker et al.

P(Mj |D,B) =
P(Mj |B) P(D|Mj,B)∑
i P(Mi|B) P(D|Mi,B)

(3)

where D is the data (the measured spectrum),Mi are the models (the candidate
molecules), and B stands for any prior background information. In particular,
we set the prior probability P(Mj|B) to zero for all molecules but the decom-
positions of the monoisotopic mass. We assign prior probability zero to sum
formulas that cannot correspond to a molecule, because of chemical considera-
tions: For any molecule, the degree of unsaturation DU = − v1

2 + v3
2 + v4 +1 [11]

is a non-negative integer, where v1, v3, v4 denote the number of monovalent
atoms (hydrogen), trivalent atoms (nitrogen, phosphor), and tetravalent atoms
(carbon) if we assume that all elements are in their lowest valency state.

Next, we assign probabilities to the observed masses and intensities. As-
suming independence (in particular from background information) we calculate
P(D|M,B) =

∏
j P(Mj |mj)

∏
j P(fj |pj). Here, P(Mj |mj) is the probability to

observe peak j at mass Mj when its true mass is mj , and P(fj |pj) is the prob-
ability to observe peak j with intensity fj when its true intensity is pj. Clearly,
the independence of peak intensities is violated because these intensities sum to
one, but this product can be seen as a rough estimate of the true probability.

We empirically estimate distributions of mass and intensity differences, as
follows: We analyze the 69 mass spectra as described in Sec. 7 and, in addition,
spectra of 33 molecules with mass above 1000Da. We know the correct sum
formulas for all of these mass spectra, so we can simulate the ideal isotope
patterns and compare with masses and intensities of measured spectra.

Regarding peak masses, our data shows a systematic mass shift due to cal-
ibration inaccuracies. This can be eliminated for all masses but the monoiso-
topic mass: We do not compare masses of the +1, . . . peaks directly but instead,
the difference to the monoisotopic peak, Mj − M0 vs. mj − m0 for j ≥ 1.
In accordance with expert knowledge, mass differences increase with increasing
mass of the molecule, so we use relative mass differences, (M0 − m0)/m0 and
(Mj −M0−mj +m0)/mj . We determine mean and variance of these quantities.
For intensities, our data indicates that ratios between measured and predicted
peak intensity fj/pj follow a log normal distribution, so we determine mean and
variance of log10 fj − log10 pj.

We want to estimate the probability that, given a peak with true mass mj ,
a peak at mass Mj is observed in the measured spectrum: More precisely, the
probability of observing a mass difference of |Mj −mj | or larger. For simplicity,
we assume that relative mass differences follow a Gaussian distribution with
parameters (μ̄, σ̄). We can compute this probability using the complementary
error function “erfc”:

P(Mj|mj) = erfc
(|xj − μ̄j |√

2 σ̄j

)
=

2√
2π

∫ ∞

z

e−t2/2dt with z :=
|x− μ̄|

σ̄
(4)

where x0 = (M0 − m0)/m0 and xj = (Mj − M0 − mj + m0)/mj for j ≥ 1.
Analogous computations can be executed for intensity differences. Regarding
peaks missing in the measured spectrum, we can use the smallest intensity of

Decomposing Metabolomic Isotope Patterns 19

any peak detected in the spectrum as an upper bound, and use a one-sided test
for the peak intensity to be below this threshold.

6 Additive Invariants and Joint Decompositions

The mass of the monoisotopic peak is an additive invariant of the decompositions
we are searching for: Given any solution, the sum of monoisotopic masses of
all elements is the input mass M0. We now present other additive invariants
resulting from the observed isotope pattern. We consider a theoretical molecule,
where iE denotes the multiplicity of element E in the molecule, E ∈ Σ.

Given the observed normalized intensities f0, . . . , fK and peak masses M0, . . . ,
MK , we easily estimate the average mass of the molecule as Mav :=

∑
i fiMi.

The average mass of an element E can be estimated by μ1(E) := E(XE); we
decompose the number Mav over the set {μ1(E) | E ∈ Σ}.

For every element E, let pE denote the probability that an isotope of this
element is monoisotopic. The intensity of the monoisotopic peak f0 should equal
the probability p∗ that the molecule has monoisotopic mass, which implies that
all atoms must have monoisotopic mass, thus p∗ =

∏
E∈Σ p iE

E . Taking the loga-
rithm we find

∑
E∈Σ iE · log pE = log f0. Defining a third set μ2(E) := − log pE ,

we can decompose − log f0 over the set {μ2(E) | E ∈ Σ}.
We have identified two more additive invariants resulting from the molecules’

isotope pattern: the relative intensity of the +1 peak f1/f0, and the weighted
mass difference of the +1 peak f1

f0
(M1 −M0).

For the current problem, we need to find joint decompositions for two or
more masses m1, . . . , mk where each mass is decomposed over a different set of
numbers of the same size. Formally, we state the

Joint Decomposition Problem. Let {a1,1, . . . , a1,n}, . . . , {ak,1, . . . , ak,n}
be k sets of non-negative integers. Let m1, . . . , mk ∈ N. Find all joint
decompositions c of m1, . . . , mk, i.e., all c = (c1, . . . , cn) ∈ N

n
0 such that

Ac = m, where A = (aij)i=1,...,k,j=1,...,n and m = (m1, . . . , mk).

The problem is clearly related to the multidimensional integer knapsack problem
[7]. In general, it is NP complete to decide if there exists at least one solution
when the matrix has integer entries. At the other extreme, if we have n many
equations, then A is a square matrix, and if its rows are linearly independent,
we can compute its inverse A−1. We then only need to check whether c =
A−1m has only non-negative integer entries; if this is the case, then c is a joint
decomposition of m1, . . . , mn.

A näıve approach to solve the joint decomposition problem is to generate all
decompositions c of m1 and then test whether

∑
i ciaj,i = mj for all j = 2, . . . , k.

However, this involves generating many decompositions unnecessarily. Another
approach is to construct Extended Residue (ER) tables for each set of numbers
[2]: For one set {b1, . . . , bm}, entry ER(r, i) of this table, for r = 0, . . . , b1 −
1 and i = 1, . . . , m, is the smallest number congruent r modulo b1 which is

20 S. Böcker et al.

decomposable over the set {b1, . . . , bi}. Then, while running the algorithm on
the ER table for {a1,1, . . . , a1,n}, in each step of the recursion, we check whether
there is still a feasible solution for all mj , j = 2, . . . , k, as well. If the answer is
negative for one j, we terminate the current recursion step and continue with
the next candidate. Note that this is a runtime heuristic only, since there may
exist decompositions over each alphabet, but they may contradict each other.

Consider matrix A of dimension k× n. By Gaussian elimination, we can find
a lower triangular matrix L ∈ R

k×k of full rank, and an upper triangular matrix
R ∈ N

k×n such that A = LR. Then, Ac = m if and only if Rc = m′, where we
can compute m′ = L−1m. In particular, c must satisfy the bottom equation of
Rc = m′ which has at most n− k + 1 non-zero coefficients. If all coefficients of
R are non-negative integers, we have a new instance of the joint decomposition
problem, which we can solve iteratively, beginning with the bottom equation: We
build ER tables for each (new) set of numbers, run the decomposition algorithm
on the bottom one, checking in each step of the recursion whether the solution
is feasible over all sets. When having computed a decomposition of m′

n over
rk,k, . . . , rk,n, we continue with the next equation, which has one variable more.
Schur’s Theorem [13] states that the number of decompositions of an integer
M over {b1, . . . , bm} grows with a polynomial in M of degree m − 1. Since the
ER-algorithm of [2] runs in time proportional to the number of decompositions,
and the number of solutions of the bottom equation is considerably lower than
of any of the original equations, we improve on runtime.

However, even though we can guarantee that all entries of R are integers, some
could be negative, yielding infinitely many solutions. In order to avoid negative
entries, one needs to exchange columns; details will be described elsewhere. We
refer to this algorithm as Dimension Reduction (DR) algorithm. In Sec. 7, we will
see that the DR algorithm yields a significant improvement over the approach
of simultaneously decomposing over the individual sets.

7 Results

Data set. Our data set consists of 69 mass spectra with single charge from sev-
eral organic (macro)molecules, composed of the elementsCHNOPS.For every such
spectrum, the sum formula of the sample molecule is known. The spectra were ac-
quired over the last two years; the molecules range in mass from 284 to 960Da.
Electrospray ionization (ESI) experiments were performed using a Fourier Trans-
form Ion Cyclotron Resonance (FT-ICR) mass spectrometer APEX III (Bruker
Daltonik GmbH, Bremen, Germany) equipped with a 7.0 T, 160 mm bore super-
conducting magnet (Bruker Analytik GmbH – Magnetics, Karlsruhe, Germany),
infinity cell, and interfaced to an external (nano)ESI ion source. Peak detection and
estimation of peak masses and intensities are conducted using vendor software.

Identification accuracy and runtimes. Every input “mass spectrum” con-
sists of masses M0, . . . , Mk and intensities f0, . . . , fk. For every such spectrum,
we compute all molecules such that the monoisotopic mass m0 has relative mass

Decomposing Metabolomic Isotope Patterns 21

Table 1. Number of correct sum formulas at certain positions of the output list, for
several mass ranges. Runtimes in seconds per spectrum. See text for details.

no. of rank in output list average no. sum formulas
mass range spectra 1 2 3–5 6–10 11+ int. real chem. runtime

200–300 3 3 0 0 0 0 60.7 26.3 5 0.0006
300–400 20 18 2 0 0 0 165.3 70.1 6.4 0.0012
400–500 25 13 5 5 2 0 560.3 236.4 17.8 0.0043
500–600 1 0 1 0 0 0 1956 833 51 0.0164
600–700 2 1 0 1 0 0 2204 934.5 30.5 0.0190
700–800 5 0 2 1 0 2 7548.6 3205.2 167.6 0.0706
800–900 8 0 1 0 1 6 12521 5325.9 340.6 0.1217

900–1000 5 0 0 0 0 5 23443 9972.8 770 0.2338

difference of at most 2 ppm, |M0−m0|/m0 ≤ 2·10−6. To do so, we decompose in-
teger masses with some blowup b ∈ R, see Sec. 3, and discard molecules with real
mass outside the mass interval. Next, we discard molecules that have negative or
non-integer degree of unsaturation DU . For every such molecule, we compute its
theoretical isotopic distribution (with K = 10) and compare it to the measured
isotopic distribution, see Sec. 4 and 5. We rank the molecules according to result-
ing probabilities. We do not use any other background information to identify
the molecule, in order to evaluate the discriminative power of isotope patterns.

Out of the 69 mass spectra, 35 result in a correct identification; in 81 % of the
mass spectra, the correct interpretation is found in the top 10 interpretations.
There is a clear correlation between mass and identification accuracy, as seen
in Table 1. For mass spectra below 700Da, the correct interpretation is always
found in the top 10 interpretations.

We analyzed all 69 mass spectra on a Pentium M 1.5 GHz processor with
blowup b = 5·104, using only a few Megabyte of memory. This results in runtimes
of less than 1/4 second per spectrum for the complete analysis of one mass
spectrum. Clearly, runtimes depend on molecule masses, see Table 1. Increasing
the blowup beyond 5 · 104 increased runtimes, presumably because the smaller
table can be kept in the processor cache.

For every mass range, we also report in Table 1 the number of integer de-
compositions (int.), the number of real decompositions (real), cf. Sec. 3, and
the number of sum formulas with non-negative integer degree of unsaturation
(chem.). These numbers are averages over all molecules in the mass range.

Joint decomposition algorithm. As a first evaluation of our algorithms for
decomposing metabolite isotope patterns, we decomposed molecular masses over
the CHNOPS alphabet, using data from the KEGG LIGAND database [6]: We
extracted 10 300 sum formulas over the alphabet CHNOPS, which reduced to
5 627 non-redundant sum formulas. We computed the monoisotopic and average
masses and used these as input for our algorithms using precision δ = 10−4 Da.

Runtimes on a Sun Fire 880 with 900-MHz UltraSPARC-III-CPU, 32 GB
RAM, are shown in Fig. 1: (i) computing all decompositions of the monoisotopic
mass, (ii) doing the same respecting decompositions of the average mass of the

22 S. Böcker et al.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 500 1000 1500 2000 2500 3000

ru
nt

im
e

[s
]

mass [Da]

mono
mono and avg
DR(mono,avg)

Fig. 1. Runtimes of decomposition algorithms in comparison (logarithmic scale): de-
composing the monoisotopic mass with no additional information (dots), simulta-
neously decomposing the monoisotopic and average masses (crosses), and the DR-
algorithm on monoisotopic and average masses (circles)

molecule, and (iii) using the DR algorithm on the monoisotopic and average
masses. Runtimes for δ = 10−3 Da are similar (data not shown). Our experiments
show that using dimension reduction as is done by the DR algorithm is greatly
superior to using additive invariants directly. It is realistic to expect that results
will carry over straightforwardly to decompositions of real masses, since the
runtimes of all algorithms are effected in the same way.

8 Conclusion

We presented an approach to determine the sum formula of an unknown metabo-
lite solely from its high resolution isotope pattern. Our approach allows us to
reduce the number of potential sum formulas to only a few candidates; in many
cases we were able to determine the correct sum formula. The approach is time
and memory efficient and can be executed on a regular desktop PC. Results on
experimental data show its potential, in particular for metabolites below 700Da.
We further presented methods for the efficient simulation of isotope patterns, as
well as an approach to significantly reduce the search space of molecule candi-
dates (additive invariants, joint decomposition). Both are vital in ranges above
1000 Da, where the search space increases rapidly.

Nevertheless, our results are only a first step towards automated determi-
nation of sum formula from high resolution mass spectrometry data. We want
to conduct further studies regarding mass and intensity variations and are cur-
rently gathering an independent test set of about 100 sample spectra. Note that
we have deliberately ignored some information available in the data, in order to
evaluate the discriminative power of a single isotope pattern, such as different
charge states, prior probability of the elements, or neutral losses. We are also
evaluating the impact of increased mass accuracy on our algorithms.

Decomposing Metabolomic Isotope Patterns 23

Acknowledgments

AP supported by Deutsche Forschungsgemeinschaft (BO 1910/1), ZsL by Alexan-
der von Humboldt Foundation and the Bundesministerium für Bildung und
Forschung, within the group “Combinatorial Search Algorithms in Bioinformat-
ics.” Additional programming by Marcel Martin, whom we thank for his unfailing
support, and by Marco Kortkamp.

References

1. G. Audi, A. Wapstra, and C. Thibault. The AME2003 atomic mass evaluation (ii):
Tables, graphs, and references. Nucl. Phys. A, 729:129–336, 2003.

2. S. Böcker and Zs. Lipták. Efficient mass decomposition. In Proc. of ACM Sympo-
sium on Applied Computing (ACM SAC 2005), pages 151–157, 2005.

3. A. Fürst, J.-T. Clerc, and E. Pretsch. A computer program for the computation
of the molecular formula. Chemom. Intell. Lab. Syst., 5:329–334, 1989.

4. A.H. Grange, M.C. Zumwalt, and G.W. Sovocool. Determination of ion and neutral
loss compositions and deconvolution of product ion mass spectra using an orthog-
onal acceleration time-of-flight mass spectrometer and an ion correlation program.
Rapid Commun. Mass Spectrom., 20(2):89–102, 2006.

5. C.S. Hsu. Diophantine approach to isotopic abundance calculations. Anal. Chem.,
56(8):1356–1361, 1984.

6. M. Kanehisa, S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M. Itoh, S. Kawashima,
T. Katayama, M. Araki, and M. Hirakawa. From genomics to chemical genomics:
new developments in KEGG. Nuc. Acid Res., 34:D354–D357, 2006.

7. H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.
8. H. Kubinyi. Calculation of isotope distributions in mass spectrometry: A trivial

solution for a non-trivial problem. Anal. Chim. Acta, 247:107–119, 1991.
9. F.W. McLafferty. Wiley Registry of Mass Spectral Data. John Wiley & Sons, 7th

edition with NIST 2005 spectral data edition, 2005.
10. S. Ojanperä, A. Pelander, M. Pelzing, I. Krebs, E. Vuori, and I. Ojanperä. Iso-

topic pattern and accurate mass determination in urine drug screening by liquid
chromatography/time-of-flight mass spectrometry. Rapid Commun. Mass Spec-
trom., 20(7):1161–1167, 2006.

11. V. Pellegrin. Molecular formulas of organic compounds: the nitrogen rule and
degree of unsaturation. J. Chem. Educ., 60(8):626–633, 1983.

12. A.L. Rockwood, J.R. Van Orman, and D.V. Dearden. Isotopic compositions and
accurate masses of single isotopic peaks. J. Am. Soc. Mass Spectr., 15:12–21, 2004.

13. H. Wilf. Generating Functionology. Academic Press, 1990.
14. J.A. Yergey. A general approach to calculating isotopic distributions for mass

spectrometry. Int. J. Mass Spectrom. Ion Phys., 52(2–3):337–349, 1983.
15. N. Zhang, R. Aebersold, and B. Schwikowski. ProbID: a probabilistic algorithm to

identify peptides through sequence database searching using tandem mass spectral
data. Proteomics, 2(10):1406–1412, 2002.

16. W. Zhang and B.T. Chait. ProFound: an expert system for protein identification
using mass spectrometric peptide mapping information. Anal. Chem., 72(11):2482–
2489, 2000.

A Method to Design Standard HMMs with

Desired Length Distribution for Biological
Sequence Analysis

Hongmei Zhu, Jiaxin Wang, Zehong Yang, and Yixu Song

Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology, Tsinghua University,

Beijing, 100084, China
zhuhongmei00@mails.tsinghua.edu.cn

Abstract. Motivation: Hidden Markov Models (HMMs) have been
widely used for biological sequence analysis. When modeling a phenom-
enon where for instance the nucleotide distribution does not change for
various length of DNA, there are two popular approaches to achieve a
desired length distribution: explicit or implicit modeling. The implicit
modeling requires an elaborately designed model structure. So far there
is no general procedure available for designing such a model structure
from the training data automatically.

Results: We present an iterative algorithm to design standard HMMs
structure with length distribution from the training data. The basic idea
behind this algorithm is to use multiple shifted negative binomial dis-
tributions to model empirical length distribution. The negative binomial
distribution is obtained by an array of n states, each with the same
transition probability to itself. We shift this negative binomial distrib-
ution by using a serial of states linearly connected before the binomial
model.

1 Introduction

Biological sequences, such as DNA, usually contain some homogeneous regions
with uncertain length where the composition distribution does not change. When
hidden Markov models are used for biological sequence analysis, there are typi-
cally one or more states modeling this kind of regions. The simplest model design
is to make a state with transition to itself with probability p [1]. After entering
the state there is a probability 1− p of leaving it, so the probability of staying
in the state for l residues is

P (l) = (1− p)pl−1. (1)

Here the emission probabilities are disregarded. In other words, this model
generates a sequence of length l with probability P (l). This exponentially decay-
ing distribution on lengths (called a geometric distribution) can be inappropriate
in some applications.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 24–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Method to Design Standard HMMs 25

A more subtle way of obtaining a non-geometric length distribution is to
use an array of n states, each with a transition to itself of probability p and a
transition to the next of probability 1− p (see Figure 1(a)). For any given state
sequence (called path) of length l through the model, the probability of all its
transition is pl−n(1− p)n. The number of possible paths of length l through the

model is
(

l − 1
n− 1

)
, so the total probability summed over all possible paths is

P (l) =
(

l − 1
n− 1

)
pl−n(1 − p)n. (2)

This distribution is called a negative binomial. This model thus generates se-
quences with lengths varying according to this distribution, as shown in Figure 2
for p = 0.99 and n ≤ 5.

The length distribution can be modeled in an explicit way, if the states of
HMMs are allowed to emit more than one symbol [2]. This extension to HMMs
is called hidden semi-Markov models (HSMMs). The “super” states once emit
a sequence of length with probability from the desired length distribution. This
model allows an accurate modeling of the length at the cost of computation time.
If no further heuristic is used the computation time of the typical algorithms
(Viterbi, forward algorithm) is at least proportional to the maximal possible
length of the state [3]. In some situations, these homogeneous regions can be
very long and it is practically infeasible to explicitly model the whole length
distribution by HSMMs.

In this work we focus on modeling length distribution implicitly and ac-
curately by using standard HMMs. A general method is presented to design
model structure to meet the desired length distribution. The negative binomial
distribution model is used as basic structure element. By placing a serial of
states linearly connected before the binomial model, the negative binomial dis-
tribution is shifted (see Figure 1(b)). This method searches for several shifted
negative binomial distributions and combines them to fit the desired length
distribution.

In the following we explain how to design a standard HMM with desired length
distribution from the very beginning, the training data. Then the experiments
on Ciona intestinalis intron data and rice exon data are showed.

1α

iα

Fig. 1. Model structures used to model the length distribution in this work

26 H. Zhu et al.

2 Methods

In this section, first we describe the shifted negative binomial model more con-
cretely. Then we give the procedures of designing a standard HMM structure
with desired length distribution estimated from the training data.

2.1 Shifted Negative Binomial Distribution and the Combination

As described above, by using an array of n states, each with a transition to itself
of probability p and a transition to the next of probability 1 − p, we obtain a
negative binomial length distribution like (2). A serial of preceding states linearly
connected will shift this binomial length distribution. If the number of this serial
states is m, the resulting length distribution would be

P (l) =
(

l −m− 1
n− 1

)
pl−m−n(1 − p)n. (3)

Figure 3 shows the binomial distribution for n = 3 and m = 100.
These shifted negative binomial distribution models are used as basic structure

elements in the following structure design. They are combined in the way shown
in Figure 1(c), each with a coefficient αi.

0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

−3

l

P
(l

)

n=1
n=2
n=3
n=4
n=5

0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

−3

l

P
(l

)

negative binomial distribution
shifted negative binomial distribution

Fig. 2. The probability distribution
over lengths for models in Figure 1(a)
with p = 0.99 and n ranging from 1 to 5

Fig. 3. The probability distribution
over lengths for negative binomial dis-
tribution and shifted negative binomial
distribution with p = 0.99 and n = 3

2.2 Length Distribution Modeling Algorithm

Suppose the training dataset contains some homogeneous sequences of length
within a wild range. First we calculate the length distribution (called empiri-
cal distribution) of training sequences based on length frequencies. This length
distribution usually is very rough because of the relatively small sample in the
training set. Then it is smoothed by some smoothingprocedure, which gives the

A Method to Design Standard HMMs 27

smoothed distribution. The shifting range is determined based on the empirical
distribution. After that the shifted negative binomial distribution candidates are
decided. We choose the most fit candidate for the smoothed distribution based
on their correlation coefficient. The least squares fitting of this candidate to
the smoothed distribution is solved as a quadratic programming problem. Then
the fitting part is subtracted from the smoothed distribution, which results in
the “residue distribution”. In the next iteration, the most fit candidate for the
residue distribution is found, and the least squares fitting of these two selected
distribution elements to the smoothed distribution is solved. After each itera-
tion the residue distribution is updated and the iteration stops until the exit
condition is reached.

More concretely, the modeling algorithm works like this:

1. Calculate the length frequencies: F (l). The empirical distribution is given by

P e(l) = F (l)/
Lmax∑
Lmin

F (i). (4)

2. Find the length Lperc1that satisfies P (l > Lperc1) = 1% and length Lperc10

that satisfies P (l > Lperc10) = 10%.
3. Replace the probability mass P e(l) at position l(l = Lmin · · ·Lperc1) by a

“discretized” normal density with mean μ = l and variance σ2 = 2l/F (l),
scaled so that the total mass is P e(l) [4]. The resulting distribution is the
smoothed distribution denoted as P s(l)(l = Lmin · · ·Lperc1) .

4. The minimum length the model is allowed to capture is denoted by Lmin.
Then the minimum shifting value mmin = Lmin − 1. The maximum shift-
ing value mmax = Lperc10. The shifted negative binomial candidates are
all these distribution elements Em,n,p with m = mmin, · · · , mmax, n =
1, · · · , 5 and p = 0.90, 0.91, · · · , 0.99. All the distributions Em,n,p(l)(L =
Lmin, · · · , Lperc1) with m = 0 are calculated before the iteration
algorithm.

5. Set j = 0 and the residue distribution R0 = P s.
6. Set j = j +1. Calculate the correlation coefficient r of each candidate distri-

bution and the residue distribution Rj−1. Choose the distribution candidate
that gives the maximum r as the current selected element Ej(l). The least
squares fitting of E1(l), · · · , Ej(l) to the smoothed distribution is solved as
a quadratic programming problem. The solution minimizes

Sj =
1
2
‖Φjαj − P s‖2 + Cj‖αj‖ (5)

With respect to αj under the constraints of αj
i ≥ 0(i = 1, · · · , j). Here

Φj = [E1 · · ·Ej] and Cj is used to control the over-fitting phenomenon.
After αj is determined, the residue distribution is given by

Rj = P s − Φj • αj . (6)

28 H. Zhu et al.

7. If the increment in the correlation coefficient of Φj •αj and P s is larger than
a predetermined value and j does not exceed a predetermined value, go to
step 6.

8. Normalize αj so that
j∑
1

αj
i = 1. Use the shifted negative binomial models

E1(l), · · · , Ej(l) and their corresponding coefficients to construct a HMM for
these sequences in the training set.

2.3 State Tying and the Most Probable Labeling

This implicit length modeling, in other words, has a few basic states appearing
again and again to achieve a certain length distribution. A basic states and all its
copies are usually supposed to have the same emission probabilities. This is called
tying of states [5]. During parameter estimation, emission probabilities are needed
not to be computed for every state, but just for every tying group of states.

There’s another feature about the implicit length modeling. The probabil-
ity of a particular length is distributed across many different state paths. In
practice, the states can be labeled and different state paths may give the same
’labeling’ path. The most probable labeling path is often more significant than
the most probable state path identified by the Viterbi algorithm. Krogh present
a so-called 1-best algorithm to find this most probable labeling path [5].

2.4 Allow a State to Emit a Certain Number of Symbols

There may be a lot of states used to shift the negative binomial models. As the
number of states is increased, the time and space complexity of typical HMM
algorithms is increased.

The time complexity of standard HMM is given as O((B + K)NT) [3]. Here
B denotes the number of operations to compute an observation likelihood for
one symbol. K denotes average number of predecessor states. N denotes the
total number of unique states in HMM set. T is the number of symbols in
the sequence being analyzed. The space complexity of standard HMM is given
as O(NT). After the shifting states are used, N is increased by several times.
Since all the linearly connected states have only one predecessor state, the time
complexity is not increased significantly. The space complexity is proportional
to the number of states.

If we use one single state to replace these linearly connected states, it will
largely reduce the space complexity. This modification is doable and will not
lose any useful information, since all the internal transmission probabilities are
1. Let N1 denote the number of states emitting a certain number (more than
one) of symbols, N2 denote all the other state, and D denote the maximum
length one state emits. Then we obtain the time complexity of this HMM as
O((B + K)N2T + (DB + K)N1T) and the space complexity as O((N1 + N2)T).
N1 is typically less than 10 and as we can see this modification largely reduces the
space complexity. The time complexity of typical HSMMs is O((B + DsK)NT)
and Ds is the maximum length one state emits in HSMMs and usually much
larger than D.

A Method to Design Standard HMMs 29

3 Experiments

3.1 Modeling the Length Distribution of Ciona Intestinalis Introns

Ciona intestinalis genes were downloaded from the ftp.ensembl.org site provided
by the Ensembl project. After the ‘sanity’ checks there are 21,164 genes left,
from which 44,053 introns were extracted as our intron training dataset.

Figure 4 shows the smoothed length distribution and Figure 5 shows the
length distribution given by the HMM structure designed by the methods de-
scribed above. All the selected shifted negative binomial elements are listed
in Table 1. After six iterations we obtained a correlation coefficient r = 0.99
of the length distribution given by the combined model and the smoothed
distribution.

Table 1. Selected negative binomial elements for ciona intron length distribution (α—
coefficients corresponding to model elements; m—the number of shifting states; n—the
number of states in the negative binomial models; p—the transition probability from
a state to itself in the binomial model)

index α m n p

1 0.52 10 3 0.99
2 0.08 47 2 0.90
3 0.28 248 2 0.99
4 0.04 206 5 0.90
5 0.06 479 5 0.99
6 0.02 192 2 0.90

0 200 400 600 800 1000
−1

0

1

2

3

4

5
x 10

−3

l

P
(l

)

0 200 400 600 800 1000
−1

0

1

2

3

4

5
x 10

−3

l

P
(l

)

Fig. 4. The smoothed length distribu-
tion for Ciona intestinalis introns

Fig. 5. The modeled length distribu-
tion for Ciona intestinalis introns

3.2 Modeling the Length Distribution of Rice Exons

Rice genes are from the rice annotation dataset assembled by TIGR Rice Genome
Project [6], at http://www.tigr.org/tdb/e2k1/osa1s. After the ‘sanity’

30 H. Zhu et al.

checks, there are there 25,074 genes left, from which 78,170 internal exons were
extracted as our exon training dataset.

Nucleotide distribution in Exons depends on the three codon positions. To
make this experiment simple, we disregard non-homogeneousness here. Figure 6
shows the smoothed length distribution and Figure 7 shows the length distribu-
tion given by the HMM structure designed by the methods described above. All
the selected shifted negative binomial elements are listed in Table 2. After four
iterations we obtained a correlation coefficient r = 0.95 of the length distribution
given by the combined model and the smoothed distribution.

Table 2. Selected negative binomial elements for rice internal exon length distribution
(the denotations are the same as in Table 1)

index α m n p

1 0.81 29 2 0.98
2 0.03 68 1 0.90
3 0.14 155 3 0.99
4 0.02 4 2 0.90

0 200 400 600 800 1000

0

5

10

15
x 10

−3

l

P
(l

)

0 200 400 600 800 1000

0

5

10

15
x 10

−3

l

P
(l

)

Fig. 6. The smoothed length distribu-
tion for rice internal exons

Fig. 7. The modeled length distribu-
tion for rice internal exons

For rice exons, the modeled length distribution is not as accurate as for the
ciona introns according to the final correlation coefficients. This may be mostly
caused by the rougher smoothed distribution of rice exon length. However the
true distribution of lengths is likely to be much smoother than this. We do not
expect an equally accurate fitting to this rougher distribution.

4 Conclusion

We present a simple iteration algorithm to design standard HMMs with desired
length distribution. To reduce the complexity of typical HMM-related algorithm,
a state is allowed to emit a certain number of symbols. The resulting HMMs

A Method to Design Standard HMMs 31

have the capability to accurately model the length distribution and are not
as complex as hidden semi-Markov models in computation time. The design
method can work without any manual help, which make it applicable to on-line
model design.

Acknowledgements

We thank Zheng Danian and Liu Hongbo, PhD students in the Department of
Computer Science and Technology, Tsinghua University, for helpful discussions.

References

1. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: prob-
abilistic models of proteins and nucleic acids. Tsinghua University Press, Beijing
(2002)

2. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. In: Proceedings of the IEEE. Volume 77. (1989) 257–286

3. Michael, T.J.: Capacity and complexity of hmm duration modeling techniques.
IEEE signal processing letters 12(5) (2005) 407–410

4. Burge, C.: Identification of genes in human genomic DNA. PhD thesis, CA: Stanford
University (1997)

5. Krogh, A.: Two methods for improving performance of an hmm and their application
for gene-finding. In: proceedings of the 5th international Conference on Intelligent
Systems for Molecular Biology, Menlo Park, CA, AAAI Press (1997) 179–186

6. Yuan, Q., Ouyang, S., Liu, J., Suh, B., Cheung, F., Sultana, R., Lee, D., Quack-
enbush, J., Buell, C.R.: The TIGR rice genome annotation resource: Annotating
the rice genome and creating resources for plant biologists. Nucleic Acids Research
31(1) (2003) 229–233

Efficient Model-Based Clustering

for LC-MS Data�

Marta �Luksza1, Bogus�law Kluge1, Jerzy Ostrowski2, Jakub Karczmarski2,
and Anna Gambin1

1 Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
2 Department of Gastroenterology, Medical Center for Postgraduate Education and

Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology,
Roentgena 5, 02-781, Warsaw, Poland

Abstract. Proteomic mass spectrometry is gaining an increasing role
in diagnostics and in studies on protein complexes and biological systems.
The issue of high-throughput data processing is therefore becoming more
and more significant. The problems of data imperfectness, presence of
noise and of various errors introduced during experiments arise.

In this paper we focus on the peak alignment problem. As an alter-
native to heuristic based approaches to aligning peaks from different mass
spectra we propose a mathematically sound method which exploits the
model-based approach. In this framework experiment errors are modeled
as deviations from real values and mass spectra are regarded as finite
Gaussian mixtures. The advantage of such an approach is that it provides
convenient techniques for adjusting parameters and selecting solutions of
best quality. The method can be parameterized by assuming various con-
straints. In this paper we investigate different classes of models and select
the most suitable one. We analyze the results in terms of statistically sig-
nificant biomarkers that can be identified after alignment of spectra.

1 Introduction

In the 1990s mass spectrometry arose as a powerful tool for protein analysis [1]
becoming one of the main technologies used in proteomics. The previously used
techniques, such as the two-dimensional gel electrophoresis, suffered from the
lack of sensitive methods for protein identification in a reasonable time. To the
contrary, mass spectrometric experiments, which measure amounts of molecules
present in a sample, are fast and allow for high-throughput data processing.

Multidimensional mass spectrometry. Mass spectrometry combined with
chromatographic technologies produces more detailed, multidimensional spectra.
Liquid chromatography mass spectrometry (LC-MS) separates compounds with
accordance to their hydrophobicity before they are introduced into the ion source
and mass spectrometer. With the usage of the HPLC column it produces a
� The research described in this paper was partially supported by Polish Ministry of

Education and Science grants KBN-8 T11F 021 28 and PBZ-KBN-088/P04/2003.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 32–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Model-Based Clustering for LC-MS Data 33

mass spectrum for each eluted fraction of molecules. Each detected peptide is
characterized by two coordinates: its molecular mass over charge (m/z) ratio
and elution time value (also called retention time).

Using computational methods of mass spectra analysis, composition of a sam-
ple can be almost uniquely identified. This ability can be exploited in diagnostics,
while searching for known factors that cause or are related to a disease. On the
other hand, even if such proteins are unknown, a significant insight can be ac-
quired by a comparative analysis of samples. Mass spectra obtained from the
diseased samples may show some characteristic patterns in peak intensities that
distinguish them from the rest of the samples. Detection of such patterns is
possible again with mathematical and statistical analysis and by application of
various data mining techniques and algorithms (see [2,3]).

Fig. 1. Two-dimensional mass
spectrum, a color coded map. The
vertical axis is retention time, the
horizontal axis is mass-to-charge
ratio. Spots indicate MS peaks
with intensities increasing from
red to blue. Cross sections along
retention time axis (right) and
m/z axis (bottom) are shown.

Peak alignment problem. One of the crucial points in the comparative anal-
ysis is the assumption that the mass spectra obtained from different samples
are properly aligned, i. e. the corresponding peptide signals are matched with
each other and the related peptide intensities are correctly identified in ev-
ery sample. In the ideal case the same molecules detected in spectra for dif-
ferent samples should have the same m/z and retention time values. Unfortu-
nately, chemical experiments are very sensitive to external conditions and in-
struments responsible for measurements are imperfect [4]. Any contamination
of the HPLC column causes changes in the elution time, thereby only identical
experiment conditions can guarantee that a peptide is eluted at exactly the same
time. One can observe quite significant drifts, especially in the retention time
dimension.

Related research. The detailed description of the crucial preprocessing phase
is often neglected in studies on mass spectrometry data that focus mainly on
further stages of analysis [3]. Most of the solutions that have been proposed
concern aligning peaks of one dimensional spectra. To this end, Tibshirani et al.
[2] apply complete-linkage hierarchical clustering to align MALDI-MS spectra,
where distances are computed along log m/z axis and each cluster represents
one peptide signal. Wong et al. [5] construct a reference, consensus spectrum,
which is aligned with the remaining spectra with insertion and deletion of data

34 M. �Luksza et al.

points. Prakash et al. [6] approach the problem of LC-MS spectra alignment with
a dynamic programming algorithm for aligning a pair of mass spectrum runs
and a heuristic score function for assessing spectra similarity. In the algorithm
proposed by Smith et al. [7] (included in the xcms package) two-dimensional
spectra are sliced into narrow overlapping m/z segments, within which a kernel
density estimator is used to detect the so called “meta-peaks,” gathering peaks
of similar values of retention time.

Mass spectra peak alignment is a clustering problem: finding groups of re-
lated peaks in a data set. Clustering based on probability models emerges as
an alternative to the heuristic based approaches to grouping. In the model-
based approach [8] it is assumed that the data is generated by a finite mixture
of underlying multivariate Gaussian distributions. This method has been suc-
cessfully applied in biological context by Yeung et al. [9] for clustering gene
expression data. Its great advantage is that it provides convenient mathemat-
ical techniques for determining the number of clusters and other model
parameters.

Our results. We propose a novel approach to mass spectrum peak alignment
with takes an advantage of the clustering based on probability models. The im-
plemented process, presented in Figure 2, involves a two-stage clustering of peak

Two−stage peak alignment

 DBSCAN

 clustering
Model based

Validation

selection

FDR

Feature

Validation

through

visualisation

correction

 Retention
time

Preprocessing: noise reduction,
 peak picking,
 monoisotopic peaks detection.

Fig. 2. The control flow through different phases of the proposed method

data: in the first step the data is partitioned into preliminary groups with the
DBSCAN algorithm [10], in the second step the model-based procedure is ap-
plied. The problem of peak alignment is very challenging due to large size of
the data and the large number of expected clusters. Thanks to the proposed
strategy, the overall method is both efficient and it retains the advantages of
the model-based approach. The quality of an alignment can be validated with
a visual analysis. Besides, we also propose a feature selection based method for
this purpose. We demonstrate the results on a colorectal cancer mass spectrum
data set.

Overview of the paper. Section 2 discusses the model-based clustering in de-
tail, covering the problem of model selection and the description of our method.
Experiments and results are presented and discussed in Section 3. Conclusions
and directions for further research are given in Section 4.

Efficient Model-Based Clustering for LC-MS Data 35

2 Methods

LC-MS data sets. From the mathematical point of view, a mass spectrum
peak p ∈ R3 is a tuple (pm, prt, pint), where pm is the m/z value, prt is the
retention time and pint is the intensity.

Each peptide has many isotopic compositions, moreover it may get different
charges when processed by the mass spectrometer. This results in the whole
family of peaks in the spectrum corresponding to the same peptide. To reduce
the redundancy, we use an automatic MS interpretation tool described in [11] to
generate the list of monoisotopic peaks from each spectrum.

The problem of alignment of a set of LC-MS peaks can be modeled as a Gaus-
sian mixture, where each component corresponds to peaks from the same peptide
with the same charge in different samples. As mentioned in Section 1, variances
are determined by a measurement error of the spectrometer and various chem-
ical factors. The dimensions taken into account during the clustering are the
mass-to-charge ratio and the retention time (not the intensity).

In the ideal case each peptide signal has one corresponding peak in every
sample. However, in some samples the signal may not be detected. Hence the
clusters are expected to have sizes about the number of samples or smaller. The
total number of clusters is often very large, with ideally one cluster corresponding
to each peptide signal.

Model-based clustering. The drawback of the heuristic based approaches is
that they do not provide means for evaluating clustering quality and for setting
the right algorithm parameters, for instance the number of clusters. Furthermore,
the statistical properties of these methods are unspecified and hence no formal
inference can be applied. These problem can be overcome if a probability model
underlying the data is assumed. In the following section we discuss the use of
finite Gaussian mixtures to model clusters of MS peaks.

The idea underlying the model-based clustering [8] is that the data is sampled
independently from many component distributions, but the components’ labels
are missing. Assume that Y = {yi|i = 1, . . . , n} is a set of independent, p-
dimensional observations. Let G be the number of components and let fk, k ∈
{1, . . . , G} be the density function of the k-th component and θk be the set
of parameters describing fk. The probability that observation y is from the
k-th component is τk. The probability density function of the mixture of the
distributions is:

f(y) =
G∑

k=1

τkfk(y|θk)

In our applications fk is the 2-dimensional Gaussian density φ with mean μk

and covariance matrix Σk:

φ(y|μk, Σk) =
exp
(
− 1

2 (y − μk)T Σ−1
k (y − μk)

)√
(2π)p detΣk

36 M. �Luksza et al.

The complete data likelihood of the observed data Y is given by the formula:

L(τ1, . . . , τG, μ1, . . . , μG, Σ1, . . . , ΣG) =
n∏

i=1

G∑
k=1

τkφ(yi|μk, Σk) (1)

Computing the parameters τ1, . . . , τG, μ1, . . . , μG, Σ1, . . . , ΣG that maximize
the likelihood (1) is rather problematic in case of Gaussian mixture models.
The Expectation-Maximization (EM) algorithm proposed by Dempster et al.
[12] was designed to solve this kind of problems. The basic idea of the algorithm
is to introduce latent (hidden) variables, knowledge of which would simplify the
maximization. In case of the clustering problem, these variables indicate which
component each observation belongs to.

Convergence of the EM algorithm may be very slow [13]. Furthermore, it does
not guarantee to return the global maximum of the likelihood. The algorithm is
very sensitive to initialization conditions, therefore is often started with a clus-
ter assignment from a model-based hierarchical clustering algorithm. Both the
model-based algorithms, agglomerative hierarchical and EM, can be parameter-
ized by adding constraints on the covariance matrices of the mixture compo-
nents. Note that while the mean μk is the center around which the elements of
the k-th component are distributed, the shape of the cluster is determined by
the covariance matrix Σk.

Banfield and Raftery [14] proposed to decompose the covariance matrix as
Σk = λkDkBkDT

k , where λk is a scalar responsible for the cluster volume, Dk

is the matrix of orthogonal eigenvectors that determines the cluster orientation
and Bk, where detBk = 1 is a diagonal matrix which determines the cluster
shape. This parameterization allows for imposing constraints on cluster shapes
when one possesses prior knowledge or beliefs about what the clusters should
look like.

In case of a mass spectrum peak data one does not expect to observe any cor-
relation between errors on the m/z and the retention time dimensions. Hence,
we have decided to focus our attention only on a class of diagonal models, i.e.
the ones that can be noted as Σk = λkBk, where Bk is a diagonal matrix and
detBk = 1. Since we knew what range of standard deviations we should expect,
we also investigated the more restrictive models with covariance matrices set
manually. The standard deviations were imposed either only on the m/z dimen-
sion or on both dimensions. In the first case we let the retention time deviation
vary among clusters. The reasoning for this is that variations in retention time
are far less predictable than the ones of mass-to-charge ratios. We tried to fit
the following models:

– [λkBk][λkBk][λkBk] – the most general diagonal model, where the volumes and shapes
are allowed to vary between clusters,

– [λB][λB][λB] – a model of identical clusters,
– [λkB][λkB][λkB] – a model in which clusters have identical shape but their volumes

may vary,
– [λBk][λBk][λBk] – a model, where all the clusters have the same volume but their shapes

may vary,

Efficient Model-Based Clustering for LC-MS Data 37

– [manually set variances, equal volume] – a model with Σk =
(

c1 0
0 c2

)
,

where c1, c2 > 0 are constants. As mentioned before, we also investigated
the diagonal models where variance of only one of the dimensions was set
and the second one was to be estimated,

– [manually set variances, varying volumes] – a model similar to the
previous one apart from the fact that the cluster volumes along the dimen-

sions of the unset variances are allowed to vary; for example, Σk =
(

c 0
0 σk

)
,

where c > 0 is a constant.

We used the mclust R package [15] for clustering in the first four models and
wrote our own procedures for the other two models.

Following [8] we used Bayesian Information Criterion (BIC) [16,17] to select
the number of clusters. BIC is defined as:

BIC = 2 lnP (D|θ̂, M)− r lnn,

where D is the data, θ̂ are the estimated parameters of the model M and r is
the number of independent parameters estimated in the model M (it depends on
the number of clusters). We pick the number of clusters with the greatest BIC.

DBSCAN algorithm.(A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise) [10] was designed for finding clusters in
spatial data, such as satellite images and protein structure data. This algorithm
applies a local cluster criterion. Clusters are regarded as dense regions in the
data space which are separated by regions of low object density, called noise.
Each cluster can have an arbitrary shape and the objects inside a cluster region
may be arbitrarily distributed.

Let N(p, ε) denote the ε-neighborhood of point p and |N(p, ε)| the number of
points from the input dataset in this neighborhood. Points p such that |N(p, ε)| <
minP ts are considered noise. Two points p and q are assigned to the same cluster
if there exists a sequence p1, . . . , pk of non-noise points, such that p1 = p, pk = q
and pi+1 ∈ N(pi, ε) for i = 1, . . . , k − 1. In our application ε = (εm, εrt) and
q ∈ N(p, ε) if and only if |pm − qm| < εm and |prt − qrt| < εrt.

Parameter ε can be chosen so as to account for our knowledge about the
range of expected mass spectrometer accuracy errors and retention time drifts.
Moreover, depending on the minP ts parameter, some of the peaks in very sparse
regions can be sieved out.

The algorithm was implemented so as to assure that sizes of the resulting
subsets are not greater than the threshold parameter, maxSize. If for initial
value of parameter ε some resulting subsets are of greater size, the algorithm is
rerun for each of those subsets separately with ε decreased. This step is repeated
until all of the subsets have sizes lower than maxSize.

Two-stage clustering. The model-based clustering cannot be directly applied
to the entire set of peaks due to efficiency reasons. We propose the following
two-stage procedure:

38 M. �Luksza et al.

1. preliminary partitioning the data set into non-overlapping subsets of mod-
erate sizes,

2. application of the model-based clustering to each subset separately.

In the first step the DBSCAN procedure is used, in the second step different
models are fitted.

Retention time correction. Retention time deviations are often too significant
for the correct peak alignment to be possible. Due to this fact Smith et al. [7]
propose an iterative procedure that comprises multiple steps of peak alignment
alternated with the retention time correction. This procedure is implemented in
the xcms package [7] and we adopt it to our setting.

Feature selection. A biomarker is an indicator of a specific biological process,
usually it is a biochemical feature or facet that can be used to measure the
progress of disease or the effects of treatment. In case of mass spectrometry
experiments we are interested in peptide signals, presence, lack or certain level
of which somehow corresponds to patient’s state.

Mathematical methods can be used to detect biomarkers. In our setting, in
terms of data mining, potential biomarkers are the features that allow for the best
discrimination between the classes. We exploited the feature selection mechanism
in order to compare the clusterings. Two approaches are used in the sequel: the
well known T-test procedure and, recently gaining much interest, the Random
Forest based feature selection algorithm [18].

False Discovery Rate. Feature selection methods usually score attributes ac-
cordingly to their computed importance. By choosing a particular level of the
score, one can simply select the attributes exceeding the threshold. However, the
issue of selecting an appropriate threshold is problematic itself. It is hard to as-
sess what level yields the really significant selections, i.e. the ones that are lowly
probable to occur by chance. We apply here the False Discovery Rate (FDR) [19]
which is a meta-test, independent on the feature selection method, designed for
choosing appropriate threshold values. The intuition is that the lower the FDR
values are, the more significant the features are.

3 Results and Discussion

Data set. Data was provided by the Mass Spectrometry Laboratory from the In-
stitute of Biochemistry and Biophysics of Polish Academy of Sciences. The mass
spectrometer used in the experiments was an Electro Spray Ionization Fourier
Transform Ion Cyclotron Resonance (ESI-FTICR) coupled with the HPLC re-
tention column.

The data set comprised mass spectra acquired from plasma samples for col-
orectal cancer patients. Apart from the patients data, control samples were also
collected from healthy donors and analyzed with the mass spectrometer. The
colorectal cancer data set consisted of 40 spectra, 23 samples corresponding to
patients and 17 to healthy donors.

Efficient Model-Based Clustering for LC-MS Data 39

The raw data in mzXML file format was preprocessed (noise reduction and
peak picking) using the NMRPipe tool [20]. We used a monoisotopic peak de-
tection program [11] to obtain a list of peak coordinates, i.e. m/z values and
retention times of the most abundant molecules. In total, there were 155294
monoisotopic peaks detected in 40 samples. The time range of detected peaks
was 922.6−4871.3 seconds (15.4−81.2 minutes), mass-to-charge ratio range was
300.127− 1499.33.

400 600 800 1000 1200 1400

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

mz

rt

500 550 600 650

3
8

0
0

4
0

0
0

4
2

0
0

4
4

0
0

mz

rt

Fig. 3. Colorectal cancer data clustered with the DBSCAN algorithm, εm = 5, εrt =
30, minPts = 10. Picture on the right presents fragment of the data in greater detail.
The cluster colors are recycled.

Experiments. We tested the model-based approach on the data set described
above. The DBSCAN algorithm was run with the following parameters: ε =
(εm, εrt) = (5, 30), minP ts = 10, the upper limit for size of a preliminary cluster
was 1000 elements. We made the assumption that the peaks that did not have at
least 10 neighbors had noise origins. The algorithm resulted in 8216 preliminary
groups and 3076 points were assigned to the noise cluster. Figure 3 presents the
peak map with preliminary clusters.

All the models presented in Section 2 were fitted within each of the prelimi-
nary clusters in the second stage of the algorithm. At one time the same model
was assumed in all the preliminary clusters. For a preliminary cluster of size n
(1 ≤ n ≤ 1000) clusterings of the number of clusters from interval [n/40, n/10]
were compared (40 is the number of samples).

In case of the models with manually set covariance matrices, the standard
deviation on mass-to-charge ratios was set to 0.04, which was selected after con-
sultations with experienced mass spectrometer operators. We tested manually
set retention time deviations of 50, 100 and 200 seconds. Apart from the men-
tioned models, we also fitted both models where the retention time deviation
was estimated by the algorithm.

The initial cluster assignments that are being improved with the EM algo-
rithm were obtained with the model-based hierarchical algorithm. Implementa-
tion from the mclust [15] R package was used. The model assumed in the hier-
archical algorithm was λI which stands for identical, spherical clusters. Hence,

40 M. �Luksza et al.

the dimensions, which are given in different units, had to be properly scaled. It
was established with empirical tests that dividing the retention time values by
100 results in reasonable initial clusters.

During the clustering peaks that gained cluster probability assignment lower
than 0.3 were sieved out. We also disregarded the clusters that had less than 4
elements from both the colorectal cancel sample group and the healthy donor
sample group.

500 520 540 560 580 600 620

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

mz

rt

Data

500 520 540 560 580 600 620

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

mz

rt
d)

500 520 540 560 580 600 620

1
0
0
0

1
0
5
0

1
1
0
0

1
1
5
0

mz

rt

f)

Fig. 4. Example of clustering acquired for one of the preliminary clusters from Fig-
ure 3 of size 999. Outcomes for models: d) λBk; f) manually set deviation of the m/z
dimension to 0.04, retention time deviations set to 100. Cluster labels and colors are
recycled.

Visual analysis of a subset (model selection). Figure 4 shows exemplary
clusters obtained from the DBSCAN algorithm and different clusterings result-
ing from different parameterizations. Peaks corresponding to the same pep-
tide are expected to form elongated groups along the retention time axis with
rather small variance along the m/z axis. One can see that the less constrained
models detected clusters that should not occur in nature, i.e. elongated along
the m/z axis. In particular, it concerns models λkBk and λBk (see picture
d in Figure 4). This artifact did not occur in case of models λB and λkB,
but some of the clusters obtained with these models comprised peaks from
too wide m/z interval. The remaining models had manually set m/z deviation
and hence the clusters look more as expected (e.g for picture f in Figure 4
manually set retention time deviation was 100 seconds). Due to space limi-
tations, the detailed results for the other models are omitted. Please refer to
our supplementary web site: http://bioputer.mimuw.edu.pl/papers/clust.
Since it is not doable to visually examine all the clusters, we tried to detect
some overall tendencies in cluster characteristics and to select most suitable
model.

Comparison with XCMS package (FDR test). Besides the visualization,
the quality of alignments was also evaluated using the FDR test with the two
feature selection methods. The idea underlying this comparison was that prop-
erly aligned peptides enable further reasoning, whereas peptides that are aligned

Efficient Model-Based Clustering for LC-MS Data 41

2.5 3.0 3.5 4.0 4.5 5.0

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

FDR T−test

Score

F
D

R

b)
c)
e)
f)
g)
h)
i)
xcms

1.0 1.5 2.0 2.5 3.0

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

FDR Random Forests

Score

F
D

R

b)
c)
e)
f)
g)
h)
i)
xcms

Fig. 5. FDR statistic computed for the T-test and the Random Forest based feature
selection. The horizontal axis shows different values of the score assigned to attributes,
the vertical axis shows FDR test values. There were 500 permutations performed and
compared with the true T-test values. and 100 permutations with the true Random
Forest scores. See Table 1 caption for the explanation of fitted model names: b) – i);
the outcome of xcms clustering is also plotted.

randomly should not reveal any valuable information. The goal of feature
selection is to extract the features, in our case aligned peaks, that best discern
classes of samples.

We compared the performance of alignments acquired with our method to
the grouping proposed in the xcms package [7]. In the xcms algorithm we set
the width of m/z segments to 0.04 (which corresponds to the standard devi-
ation in our method) and we applied the same filtering criterion as in our
method: clusters that did not contain at least 4 peaks neither from the col-
orectal cancer samples nor from the healthy donors samples were sieved out.
In all the experiments we performed 4 iterations of the retention time
correction.

In Figure 5 we present FDR plots for each of the clusterings for the T-test and
Random Forest based feature selection respectively. The closer to zero a plot is,
the greater is the number of significant features detected.

Several interesting observations can be made: in general, the models with
manually imposed m/z deviation got plots closer to zero. The differences get
smaller with the increasing score value. The best among the remaining models
is λkB. Unexpectedly, plots of models λkBk and λB are very close while the
clusters on the visually analyzed subset were very different.

When comparing FDR plots it is visible that our method produces higher
quality clusters than xcms. The number of clusters is roughly on the same level,
but in case of xcms processing significantly more peaks are filtered out (see Ta-
ble 1). The running time of our method depends on the selected model and varies
from 40 to 90 minutes on a desktop computer (heuristic algorithm implemented
in the xcms package is much quicker – 3 minutes).

42 M. �Luksza et al.

Table 1. Clustering statistics, reported are: the number of clusters and the number
of peaks that were either rejected by the DBSCAN algorithm or after the clusters’
filtration. Explanation of model names: a) λkBk; b) λB; c)λkB; d) λBk; e)–i) All the
models have manually imposed deviation of the m/z dimension to 0.04, retention time
deviations are: e) 50 f) 100 g) 200 h) estimated, the same for all clusters i) estimated,
varying between clusters.

Model number of: Model number of:
clusters rejected peaks clusters rejected peaks

a 5718 20437 f 7768 21794
b 5979 23158 g 7753 21622
c 6374 22662 h 7935 27250
d 5775 19878 i 8168 29050
e 7753 22418 xcms 799679967996 475244752447524

4 Conclusions

The alignment of corresponding peptide signals across samples is a very crucial
stage of mass spectrum data interpretation, errors introduced here are propa-
gated in the further analysis and often prevent its success. We have proposed
a novel approach to this problem based on a sound mathematical framework.
The method is designed for aligning two dimensional LC-MS spectra, but the
extension to analysis of spectra of more dimensions is straightforward.

The comparison with the only accessible tool (xcms) shows the superior per-
formance of the model-based approach. With our method we could select the
models that detected a greater number of significant features. The visual anal-
ysis of clusters proved that the models with imposed m/z deviations resulted in
alignments corresponding to our expectations (see Figure 4).

A great advantage of our approach is not only its performance but also the
possibility of the correct model selection offered by the BIC analysis. By ap-
plying the “divide and conquer” strategy (the DBSCAN pre-clustering) we also
demonstrated the practicability of the model-based approach on inherently large
LC-MS data sets.

In the proposed method we took into account only the m/z and retention
time values for peak description, disregarding peak intensities. One peptide usu-
ally has multiple corresponding peptide signals in a spectrum, for each possible
charge value. The distribution of such related peptide signals corresponding to a
peptide should be similar across mass spectra. This model requires further study.

References

1. Aebersold, R., Mann, M.: Mass-spectrometry based proteomics. Nature 422 (2003)
198–207

2. Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., Le,
Q.T.: Sample classification from protein mass spectrometry, by ”peak probability
contrasts”. Bioinformatics 20 (2004) 3034–3044

Efficient Model-Based Clustering for LC-MS Data 43

3. Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D.,
Williams, K., Zhao, H.: Comparison of statistical methods for classification of
ovarian cancer using mass spectrometry data. Bioinformatics 19 (2003) 1636–1643

4. Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T.A., Hill, L.R., Norton, S., Kumar,
P., Anderle, M., Becker, C.H.: Quantification of proteins and metabolites by mass
spectrometry without isotopic labeling or spiked standards. Analytical Chemistry
75 (2003) 4818–4826

5. Wong, J.W.H., Cagney, G., Cartwright, H.M.: SpecAlign. processing and alignment
of mass spectra datasets. Bioinformatics 21 (2005) 2088–2090

6. Prakash, A., Mallick, P., Whiteaker, J., Zhang, H., Paulovich, A., Flory, M., Lee,
H., Aebersold, R., Schwikowski, B.: Signal maps for mass spectrometry-based
comparative proteomics. Molecular and Cellular Proteomics 5 (2006) 423–432

7. Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R., Siuzdak, G.: XCMS: Pro-
cessing mass spectrometry data for metabolite profiling using nonlinear peak align-
ment, matching, and identification. Analytical Chemistry 78 (2006) 779 – 787

8. Fraley, C., Raftery, A.E.: How many clusters? which clustering method? answers
via model-based cluster analysis. The Computer Journal 41 (1998) 578–588

9. Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., Ruzzo, W.L.: Model-based
clustering and data transformations for gene expression data. Bioinformatics 17
(2001) 977–987

10. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Simoudis, E., Han, J.,
Fayyad, U., eds.: Second International Conference on Knowledge Discovery and
Data Mining, AAAI Press (1996) 226–231

11. Gambin, A., Dutkowski, J., Karczmarski, J., Kluge, B., Kowalczyk, K.,
J.Ostrowski, Poznański, J., Tiuryn, J., Bakun, M., Dadlez, M.: Automated re-
duction and interpretation of multidimensional ms data for analysis of complex
peptide mixtures. International J. of Mass Spectrometry (2006) (in press).

12. Dempster, A.P., Laird, N., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. J. of Royal Statististical Society Series B (1977) 1–38

13. Petersen, K.B.: On the slow convergence of EM and VBEM in low-noise linear
models. Neural Computation 17 (2005) 1921–1926

14. Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering.
Biometrics 49 (1993) 803–821

15. Fraley, C., Raftery, A.E.: MCLUST: Software for model-based clustering, density
estimation and discriminant. Technical Report 415R, University of Washington,
Department of Statistics (2002)

16. Haughton, D.M.A.: On the choice of a model to fit data from an exponential family.
The Annals of Statistics 16 (1988) 342–355

17. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6
(1978) 461–464

18. Breiman, L.: Random forests. Machine learning 45 (2001) 5–32
19. Storey, J., Tibshirani, R.: Statistical significance for genomewide studies. PNAS

100 (2003) 9440–9445
20. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., Bax, A.: Nmrpipe: a

multidimensional spectral processing system based on unix pipes. J. Biomol. NMR
6 (1995) 277–293

A Bayesian Algorithm for Reconstructing

Two-Component Signaling Networks

Lukas Burger and Erik van Nimwegen

Biozentrum, University of Basel
Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland

{lukas.burger, erik.vannimwegen}@unibas.ch

Abstract. We present an algorithm, based on a Bayesian network model,
for ab initio prediction of signaling interactions in bacterial two-component
systems. The algorithm uses a large training set of known interacting ki-
nase/receiver pairs to build a probabilistic model of dependency between
the amino acid sequences of the two proteins and uses this model to pre-
dict which pairs interact. We show that the algorithm can accurately re-
construct cognate kinase/receiver pairs across all sequenced bacteria. We
also present predictions of interacting orphan kinase/receiver pairs in the
bacteriumCaulobacter crescentus and showthat these significantly overlap
with experimentally observed interactions.

1 Introduction

The automated prediction of protein-protein interactions on the basis of their
amino acid sequences alone is one of the great challenges in computational bi-
ology. Here we present a first attempt at such an algorithm for the large class
of bacterial two-component systems. In their simplest form, two-component sys-
tems consists of two proteins: a histidine kinase and a response regulator [1].
In many cases the histidine kinase is a membrane-bound protein, with a sensor
domain which responds to environmental cues and, on the cytoplasmic side, a
kinase domain, which autophosphorylates upon activation of the sensor. The
kinase domain very specifically interacts with its cognate response regulator by
transferring the phosphate to the regulator’s receiver domain. Phosphorylation
leads to the activation of the regulator, which often acts as a transcription fac-
tor. Since two-component systems are responsible for most signal transduction
in bacteria[1, 2], successful computational prediction of two-component system
interactions would allow exhaustive reconstruction of signaling networks across
all fully sequenced bacterial genomes.

There are several reasons that make two-component systems particularly at-
tractive for computational modeling. Firstly, both the histidine kinase and the
receiver domain exhibit a high degree of sequence similarity and they can be
easily detected in fully-sequenced genomes using hidden Markov models. Sec-
ondly, two-component systems are very abundant in the bacterial and archeal
kingdom, with many tens of interacting pairs in some genomes, and thousands of

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 44–55, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Bayesian Algorithm for Reconstructing 45

examples across all genomes, providing enough data for relatively subtle statis-
tical modeling. Finally, for a significant fraction of all two-component systems,
the interacting partners lie in the same operon on the genome, which allows us
to easily extract a large number of examples of “known” interacting pairs.

In this article, we will present an algorithm that uses a statistical model to
predict interacting kinase/receiver pairs. We test the performance of the algo-
rithm on reconstructing known cognate pairs from all sequenced bacteria and
use it to predict interaction partners for orphan kinases in the Gram-negative
bacterium Caulobacter crescentus, where orphans play an important role in the
cell-cycle progression [3]. We will show that our predictions agree well with the
experimental results.

To our knowledge our method is the first computational approach for com-
prehensive prediction of two-component interactions, and the first to explicitly
model dependencies between interacting amino acids in this context. In a previ-
ous work it was shown that some two-component interactions can be predicted
within the context of a general method for inferring interactions between pro-
teins from the similarity of their phylogenetic trees [4]. However, this method is
not applicable beyond small selected subsets of kinase/receiver pairs.

2 Outline of the Algorithm

Our prediction algorithm operates in two steps. Comparison of the kinases from all
sequenced bacteria shows that there are 7 major classes of domain architectures.
Using a training set of cognate receivers for each class of kinases we build position-
specific weight matrices (WMs) for the receivers of each class and use these to clas-
sify receivers. This allows us to predict, for each receiver, which type of kinase it
will interact with. In the second step of our algorithm we aim to identify which ki-
nase/receiver pairs within a class interact. To this end we again use training sets of
cognate kinase/receiver pairs and identify pairs of amino acid positions in kinase
and receiver that show significantmutual information. Using anetwork of such cor-
related positions we construct statistical models for the joint distribution of amino
acids in interacting kinase/receiver pairs. The final “score” for a putative interact-
ing pair is given by the ratio of the likelihood of their sequences given that they are
an interacting pair and the likelihood assuming independence of their sequences.
In order to reconstruct cognate kinase/receiver pairs genome-wide we use Markov
chain Monte-Carlo sampling to sample all ways of assigning kinase/receiver pairs,
sampling each assignment in proportion to the likelihood of the sequences of all
interacting pairs in the assignment.

3 Classifying Bacterial Two-Component Systems

To gather an exhaustive collection of two-component system proteins, we first
collected a set of hidden Markov profiles from the Pfam database [5] that char-
acterize two-component systems. These are the histidine-kinase profiles HisKA,
HisKA 2(or H2), HisKA 3(or H3), and HWE HK, the ATP-binding domain

46 L. Burger and E. van Nimwegen

HATPase c, the His-containing phosphotransfer domain Hpt, and the response
regulator receiver domain Response reg (or RR). We then collected all bacterial
genomes from the NCBI database (ftp.ncbi.nlm.nih.gov/genomes/Bacteria)
and searched for matches to all these domains, using the hmmpfam program
(http://hmmer.wustl.edu/) with an E-value cutoff of 10−4.

3.1 Cognate Pairs and Orphans

Depending on their position on the DNA, kinases and response regulators were
further classified as follows. We defined operons as maximal sets of contiguous
genes on the same strand of the DNA with all intergenic regions between con-
secutive genes less than 100 bps in length. Whenever an operon contains only
one kinase and one receiver these two were considered a cognate pair that we
assume to interact. Kinases and receivers that occur by themselves in an operon
were named orphans. For virtually all of these ‘orphan’ kinases and receivers it is
currently unknown what partners they interact with and one of the major aims
of our algorithm is to predict interaction partners for these orphans.

3.2 Kinase Domain Architectures

Whereas the response regulators are characterized by a single receiver profile,
the kinases are represented by 6 different Pfam profiles. Although kinases dis-
play a large variety of different domain architectures, we find that most domain
architectures are very rare, and that almost all kinases fall within the 7 most
abundant classes shown in Table 1.

Table 1. Pfam domain combinations of the most abundant kinase architectures and
the numbers of their occurence in both cognates and orphans. Both the short and long
hybrid architecture can contain one or two receiver domains.

Name Architecture no.cognates no.orphans

HisKA HisKA, HATPase c 2165 979

H3 H3, HATPase c 415 75

Chemotaxis Hpt, HATPase c 113 35

Long hybrid HisKA, HATPase c, RR, (RR), Hpt 86 151

Short hybrid HisKA, HATPase c, RR, (RR) 82 591

HWE HWE or H2, HATPase c 22 172

Hpt Hpt 19 48

3.3 Multiple Alignments

To produce multiple alignments of the receiver domains and of the kinases in each
of the 7 classes we first used the program Hmmalign (http://hmmer.wustl.edu/)
for each domain. For the HisKA, chemotaxis, HWE and H3 kinase classes we con-
structed a full alignment by simply concatenating the alignments of the kinase and
the HATPase c domains. For the short hybrids we aligned the HisKA and HAT-
Pase c domains and for the long hybrids only the Hpt domain.

A Bayesian Algorithm for Reconstructing 47

To check the accuracy of the alignments we compared the Hmmalign align-
ments with alignments made by the ProbCons algorithm [6]. For each class 200
sequences were selected at random (or all if the class has less than 200 sequences)
and aligned with ProbCons. We then selected all columns in the hmmalign align-
ments that contain less than 15% gaps and for which at least 80% of the amino
acids in the column also align together in a single column in the ProbCons align-
ment. We call these columns the ‘trusted positions’. Finally, we replaced each
alignment with the alignment of only the trusted positions.

3.4 Classification of Response Regulators

We found that response regulators that interact with different types of kinases
show distinct amino acid compositions and these differences can be used to
predict, for each receiver, what kind of kinase it will interact with.

We divided the multiple alignment of all cognate receivers into 7 sub-alignments
corresponding to all receivers that interact with kinases of a particular class. For
each of the 7 alignments we then constructed a position specific weight matrix

wc
iα =

nc
iα + λ

(nc + 21λ)
. (1)

Here nc
iα is the number of times amino acid α occurs in column i of the alignment

(gaps are treated as a 21st amino acid) of cognate receivers of class c, nc is the
total number of sequences in the alignment, and λ is the pseudocount resulting
from the Dirichlet prior (we used λ = 1/2). wc

iα is thus the estimated probability
of seeing amino acid α in position i of a receiver of class c.

Given a receiver with sequence S we can now determine the posterior proba-
bility P (c|S) that it belongs to class c. We have

P (c|S) =
P (S|c)P (c)∑
c′ P (S|c′)P (c′)

with P (S|c) =
∏

i∈TP

wc
iSi

. (2)

Here Si stands for the amino acid in the ith position of receiver sequence S.
Note that the product only runs over all the trusted positions TP. We assumed
a uniform prior P (c) = 1/7. When classifying a regulator whose sequence was
used in the construction of the WM we removed its contribution from the counts
nc

iα.
The results of the classification are shown in Figure 1. The posterior proba-

bilities for the 7 classes were calculated for each receiver and the receiver was
assigned to the class with the highest posterior probability (which is often close
to 1). The results show that for the three most abundant types (HisKA, H3,
and chemotaxis kinases) the classifier predicts almost perfectly which receivers
interact with HisKA kinases, which with H3 kinases, and which with chemotaxis
kinases. For the other, rarer classes the classification is still correct in the ma-
jority of the cases, except for the very rare Hpt kinases where slightly more than
half are misclassified. The lower performance for the rarer classes is presumably
due to the fact that the WM models for these classes are based on a relatively
small number of examples.

48 L. Burger and E. van Nimwegen

HisKA SH LH H3 HWE Chem Hpt
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HisKA

SH

LH

H3

HWE

Chem

Hpt

Fig. 1. Predicted classification of receivers. Each bar represents the set of all receivers
that are member of a cognate pair with kinases of a particular type.The color distribution
in the bar shows what percentages of the receivers are classified with each class. The
correspondence between color and kinase type is shown in the legend on the right. SH
and LH stand for short and long hybrid, respectively, and Chem stands for chemotaxis.

The types of misclassifications match what is to be expected based on the
domain architectures. Both chemotaxis and long hybrid kinases contain an Hpt
domain and some of the receivers that interact with a single Hpt domain kinase
are mistaken for a receiver that interacts with the Hpt domain of a chemotaxis
or long hybrid kinase. Similarly, both long and short hybrids contain an HisKA
domain and their receivers are sometimes mistaken for a receiver that interacts
with a single HisKA domain kinase. Overall, the WM model predicts the correct
type of kinase for 93% of the cognate receivers.

4 Predicting Cognate Interactions

Once we have classified the receivers according to the type of kinase they inter-
act with, the second step of our algorithm consists of predicting, for each class,
which pairs of kinases and receivers interact. To do this we make alignments
of all cognate kinase/receiver pairs in each class by simply concatenating the
respective kinase and receiver alignments. We then build probabilistic “depen-
dent” models for the joint amino acid sequences of cognate kinase/receiver pairs
and “independent” models for the kinases and receivers independently. The algo-
rithm then predicts interactions between kinase/receiver pairs whose sequences
are more likely under the dependent than under the independent model.

4.1 Quantifying Dependence Between Positions in Kinase and
Receiver

Given the joint multiple alignment of kinase/receiver pairs in a particular class
we quantify the dependence between all pairs of trusted positions (i, j), where

A Bayesian Algorithm for Reconstructing 49

the positions i and j may both be either in the kinase or in the receiver, using
a measure closely related to mutual information. For each pair (i, j) we calcu-
late the likelihood of the observed columns of amino acids under a model that
assumes the amino acids at the two positions were drawn from two independent
distributions and under a model that assumes general dependence between the
two amino acids. In particular, for the independent model let pα denote the prob-
ability to observe amino acid α at position i, and let qβ denote the probability
to observe amino acid β at position j. For the dependent model, let wαβ denote
the probability to observe the pair of amino acids (α, β) at positions (i, j). Fi-
nally, let Dij denote the columns of observed amino acids in the alignments at
positions i and j, nα· the number of times α is observed at position i, n·β the
number of times β is observed at position j, and nαβ the number of times the
pair of amino acids (α, β) is observed at positions (i, j).

Given the joint probability wαβ the probability of the data Dij is given by

P (Dij |w) =
∏
αβ

(wαβ)nαβ (3)

and under the independent models p and q the probability of the data is given
by

P (Dij |p, q) = P (Di|p)P (Dj |q) =

[∏
α

(pα)nα·

]⎡⎣∏
β

(qβ)n·β

⎤⎦ . (4)

Since the distributions p, q and the joint distribution w are unknown, they are
nuisance parameters that we integrate out of the likelihood for the dependent
and independent models. We use Dirichlet priors of the form P (w) ∝

∏
αβ wλ−1

αβ

and integrate over the simplices
∑

α pα =
∑

β qβ =
∑

αβ wαβ = 1. We then
obtain for the probability of the data under the dependent model

P (Dij |dep) =
∫

P (Dij |w)P (w)dw =
Γ (212λ)

Γ (n + 212λ)

∏
αβ

Γ (nαβ + λ)
Γ (λ)

, (5)

and similarly for the probability of the data under the independent model

P (Dij |indep) =
Γ 2(21λ)

Γ 2(n + 21λ)

[∏
α

Γ (nα· + λ)
Γ (λ)

]⎡⎣∏
β

Γ (n·β + λ)
Γ (λ)

⎤⎦ , (6)

where Γ (n) is the Gamma function. Finally, we quantify the amount of de-
pendence between positions i and j by the log-ratio Rij of likelihoods of the
dependent and independent models

Rij = log
[

P (Dij |dep)
P (Dij |indep)

]
. (7)

For our calculations we used the Jeffreys, or information theory prior with
λ = 1/2. One can think of the quantity R as a finite-size corrected version
of the mutual information that takes into account the larger model space of the
dependent model [7].

50 L. Burger and E. van Nimwegen

4.2 Probabilities of Kinase/Receiver Pairs Under Interacting and
Independent Models

For each class, Rij was calculated for each pair of trusted positions both between
kinases and receivers and within the proteins themselves. Since, due to the evo-
lutionary relationship of our sequences, the correlations may be overestimated,
we chose a stringent cut-off of R = 50 for the HisKA class and, to still obtain
a reasonable number of dependent positions, a more lenient cut-off of R = 0 for
the other classes. For each class we then collected the set of ‘significant positions’
Ωc that score over the threshold with at least one other position.

The two-point correlation structure of the significant positions can be repre-
sented by a graph in which each node is a significant position and two nodes are
connected if R for the two positions scores over the threshold. Interestingly, we
find that this graph generally consists of a large connected component containing
both kinase and receiver positions, plus a few small connected components con-
taining either only kinase or only receiver positions. Since the positions in these
small components do not contain information about the dependence between
kinase and receiver we discarded them from the set Ωc.

We now approximate the joint distribution of the significant positions in in-
teracting kinase/receiver pairs using pairwise conditional probabilities between
positions. The procedure is illustrated in Figure 2. The multiple alignments of
cognate kinase-receiver pairs are shown at the top with the significant positions
as colored columns and the arcs indicating which pairs of columns correlate

Fig. 2. Multiple alignments of cognate (interacting) kinase/receiver pairs with signif-
icant positions shown as colored columns. The arcs show the pairs of positions that
are significantly correlated. The correlation structure of the dependent and indepen-
dent models are shown at the bottom. The edges that are removed by the Chow-Liu
algorithm are shown as dotted lines.

A Bayesian Algorithm for Reconstructing 51

significantly. To factorize the joint probability of all significant positions we use
a slightly modified version of the Chow-Liu algorithm [8] that reduces the cor-
relation graph to a tree while maximizing the sum over the R values along the
remaining edges. For example, in the bottom left of Figure 2 the links 6 and 7
with the lowest R values were removed to yield a tree. Once a root is chosen
(arbitrarily) each position i (except for the root) will have exactly one parent
π(i) and we factor the joint probability by assuming the amino acid at position
i is only dependent on the amino acid at position π(i). That is, if SK,R denotes
the set of significant positions for kinase K and receiver R then the probability
P (SK,R|c) of the sequences assuming that they are an interacting pair of class c
is given by

PK,R(SK,R|c) =
∏

i∈Ωc

P (Si
K,R|S

π(i)
K,R, c) with P (Sr

K,R|S
π(r)
K,R , c) ≡ P (Sr

K,R|c),

(8)
for the root of the tree r. Here Si

K,R is the amino acid in the ith significant
position of the kinase-regulator sequence and π(i) is the parent of position i
as defined by the tree. The probability P (α|β, c) to observe amino acid α at
position i given that amino acid β occurs at position π(i) is given by

P (α|β, c) =
nc

αβ + λwc
iα

nc
·β + λ

, (9)

where nc
αβ is the number of times the pair αβ occurs at positions i and π(i) of

the cognate kinase-receiver pairs of class c, nc
·β is the total number of times that

β occurs at position π(i), and λ is the pseudo-count of the Dirichlet prior (here
we use a much larger λ = 10 to smooth fluctuations due to the small sample
size). Note that we made the prior for the conditional probabilities proportional
to the independent probability, i.e. the WM wc, for class c.

In complete analogy we calculate the independent probabilities P (SK |c) of
the kinase and P (SR|c) of the receiver, where we now only allow conditional
dependence between positions within the kinase and positions within the receiver
as in the bottom right of Figure 2. Finally, we assign a “score” Z(K, R|c) to the
pair K, R which equals the logarithm of the likelihood ratio

Z(K, R|c) = log
[

P (SK,R|c)
P (SK |c)P (SR|c)

]
. (10)

4.3 Results on Reconstructing Cognate Pairs

For each genome and each class we collected all kinases in the class together
with their cognate receivers. For the two largest classes, the HisKA and H3
class, we randomly divided the genomes into two groups of equal size and used
one group as the training set for scoring the other group. For the remaining
classes, due to their relatively small size, we followed a leave-one-out strategy,
i.e. we scored each pair using all the remaining kinase/receiver pairs as the

52 L. Burger and E. van Nimwegen

0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
HisKA class

sp
ec

ifi
ci

ty

sensitivity
0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1
H3 class

sp
ec

ifi
ci

ty

sensitivity

0.8 0.85 0.9 0.95 1
0.4

0.5

0.6

0.7

0.8

0.9

1

sp
ec

ifi
ci

ty

sensitivity

long hybrid class

0.8 0.85 0.9 0.95 1
0.4

0.5

0.6

0.7

0.8

0.9

1

sp
ec

ifi
ci

ty

sensitivity

short hybrid class

Fig. 3. Sensitivity/Specificity curves for the 4 most abundant kinase classes. The solid
lines give the estimated specificity and the dashed lines give one standard error of the
estimate. In the case of the HisKA and H3 class, the specificity is averaged over ten
different partitions into training and test set.

training set. For each class, we then used Markov chain Monte-Carlo sampling
to sample, for every genome, all ways of assigning one kinase to each receiver. Let
a denote an assignment and let R(K, a) denote the receiver assigned to kinase
K in assignment a. The probability of sampling a is then given by

P (a) ∝ exp

[∑
K

Z(K, R(K, a))

]
. (11)

We then measured what fraction of the time f(R, K) during sampling each
kinase K was assigned to each receiver R. For different values of f we counted
what fraction of true interacting pairs (i.e. cognate pairs) from all genomes have
f(R, K) > f (sensitivity) and also what fraction of all pairs that have f(R, K) >
f are true interacting pairs (specificity). The resulting sensitivity/ specificity
curves for the 4 most abundant kinase classes are shown in Figure 3. For the
HisKA and H3 classes, we repeated the random partition into training and test
set ten times and calculated, for each given sensitivity, the mean specificity as
well as the fluctuations around the mean. As the figure shows, our model very
accurately predicts for all classes which kinase interacts with which receiver.
For example, more than 50% percent of all cognate pairs for all classes can be
predicted at a specificity close to 1. Note that in a genome with n cognate pairs
there are only n true interactions among n2 possible interactions. This explains
why the lowest specificities are obtained for the large HisKA class, i.e. the correct

A Bayesian Algorithm for Reconstructing 53

interactions have to be discovered in a much larger set of putative interactions
for this class. Still, even for HisKA 70% of all true interactions are predicted at
a specificity of about 70%.

5 Prediction of Orphan Interactions in Caulobacter
Crescentus

Although the previous section shows that our algorithm can accurately recon-
struct interacting pairs for the cognate kinases and receivers, these predictions
are not biologically novel since for cognate pairs the interacting partners could
already be determined from their positions on the DNA. Therefore, we next
applied our algorithm to predict interaction partners for orphan kinases and re-
ceivers. It is difficult to assess the performance of our algorithm in this context
since only very few orphan interactions have been experimentally characterized.
Moreover, most of the experimental work is done in vitro under conditions that
are very different from those in vivo and it is not clear if observed interactions
in vitro reliably reflect in vivo interactions.

We chose the bacterium Caulobacter crescentus as a test case since most ex-
perimentally known orphan interactions are from that organism [3, 9]. C. cres-
centus contains 40 orphan kinases of which 6 are in the class of HisKA kinases.
Since all but two of the known interactions involve HisKA kinases we decided
to focus on the 5 HisKA kinases for which at least one interaction has been ex-

Table 2. Predictions for HisKA orphan kinases of Caulobacter Crescentus for which
at least one interaction has been experimentally characterized. For each kinase K the
receivers are sorted by their score Z(K, R) and the known interactions are indicated.
We cut off each list to include the known interactions except for the interaction of DivL
with the receiver CtrA, which occurs at position 16 in the list of DivL.

kinase regulator interaction score experimental evidence

DivL DivK 3.75 yeast two-hybrid screen [10]

PleC DivK 1.95 in vitro phosphorylation [11]
PleC PleD -0.47 in vitro phosphorylation [11]

CckN CC1364 (CheYIII protein) 9.28
CckN DivK 8.47 yeast two-hybrid screen [10]

CenK CC1842 7.38
CenK CenR 6.39 in vitro phosphorylation [11]

DivJ CC3155 (CheYIII protein) -0.51
DivJ CC0612 (NasT) -1.75
DivJ CC3162 -2.17
DivJ CC1842 -2.28
DivJ CC3471 -2.38
DivJ CC1364 (CheYIII) -2.65
DivJ DivK -2.65 in vitro phosphorylation [11]
DivJ PleD -3.52 in vitro phosphorylation [11]

54 L. Burger and E. van Nimwegen

perimentally characterized. There are 23 orphan receivers in C. crescentus and
we determined the score Z for each orphan receiver with each of these 5 HisKA
orphan kinases. The results are shown in table 2. As shown in the table, 5 of 7
experimentally observed interactions rank either immediately at the top or at
the second position of the ordered list for each kinase. For DivJ the two known
interactions with DivK and PleD occur at positions 7 and 8 of the list (of 23
receivers in total). The only known interaction not shown in the table is the
interaction of DivL with CtrA which occurs at position 16 of DivL’s list. To test
the significance of these predictions we calculated p-values under a rank-sum
test, i.e. by randomly permuting the ranks of the interaction scores. If we in-
clude the “bad” case DivL-CtrA, the probability of getting a set of predictions
as good or better in ranks than ours is p = 5 · 10−4. Without CtrA, the p-value
is p = 3.5 · 10−5.

In summary, in spite of the small number of experimentally determined orphan
interactions the predictions of our algorithm show a significant overlap with the
known interactions.

6 Conclusions

We have presented the first computational method for extensive reconstruction
of bacterial signaling networks from knowledge of amino acid sequences only.
First, we found that the domain architectures of almost all kinases of bacte-
rial two-component systems fall into 7 distinct classes and that, using position-
specific weight matrices, one can accurately predict which of these kinase classes
each receiver domain interacts with. Using training sets of known interacting
kinase/receiver pairs we determined which positions in the kinase and the re-
ceiver show clear evidence of dependence between their amino acids. From this
correlation structure we constructed a probabilistic model for the joint distribu-
tion of the amino acid sequences of interacting pairs, and ‘independent’ models
for the distributions of amino acids in kinases and receivers separately. Finally,
with these probabilistic models we predict kinase/receiver interactions across
all sequenced bacterial genomes. We first tested our predictions on the cognate
pairs. These tests show that the cognate interactions can be very accurately re-
constructed using our model. Second, we predicted interactions between orphan
kinase and receivers in Caulobacter crescentus, and compared these with the few
interactions that have been characterized in the literature. This test showed a
significant overlap between the known interactions and the predictions of our
algorithm. Given the small number of examples involved we cannot yet assess
if the very high performance observed on the cognates generalizes to the or-
phans but it is highly encouraging that for 4 of the 5 tested kinases observed
interactions ranked at the first or second position of our list of predictions. We
believe that the large number of orphan interactions predicted by our algorithm
across all sequenced genomes already form a valuable data-set for experimental
investigation.

A Bayesian Algorithm for Reconstructing 55

References

1. Stock, A., Robinson, V., Goudreau, P.: Two-component signal transduction. Ann.
Rev. Biochem. 69 (2000), 183–215

2. Grebe, T., Stock, J.: The histidine protein kinase superfamily. Advances in Micro-
bial Physiology 41 (1999), 139–227

3. Ausmees, N., Jacobs-Wagner, C.: Spatial and temporal control of differentiation
and cell cycle progression in Caulobacter Crescentus. Ann. Rev. Microbiol. 57
(2003), 225–247

4. Ramani, A., Marcotte, E.: Exploiting the co-evolution of interacting proteins to
discover interaction specificity. J. Mol. Biol. 327 (2003), 273–284

5. Bateman, A., Coin, L., Durbin, R., Finn, R., Hollich, V., Griffiths-Jones, S.,
Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E., Studholme, D., Yeats,
C., Eddy, S.: The Pfam protein families database. Nucl. Acids Res. 32 (2004),
D138–D141

6. Do, C., Mahabhashyam, M., Brudno, M., Batzoglou, S.: Probcons: Probabilistic
consistency-based multiple sequence alignment. Genome Research 15 (2005), 330–
340

7. van Nimwegen, E., Zavolan, M., Rajewsky, N., Siggia, E.D.: Probabilistic clustering
of sequences: Inferring new bacterial regulons by comparative genomics. Proc. Natl.
Acad. Sci. USA 99 (2002), 7323–7328

8. Chow, C., Liu, C.: Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory IT-14 (1968), 462–467

9. Skerker, J., Laub, M.: Cell-cycle progression and the generation of asymmetry in
Caulobacter crescentus. Nature Reviews Microbiology 3 (2004), 325–337

10. Ohta, N., Newton, A.: The core dimerization domains of histidine kinases contain
specificity for the cognate response regulator. J. Bacteriology 185 (2003), 4424–
4431

11. Skerker, J., Prasol, M., Perchuk, B., Biondi, E., Laub, M.: Two-component signal
transduction pathways regulating growth and cell cycle progression in a bacterium:
a systems-level analysis. PLOS Biol. 3 (,2005) e334

Linear-Time Haplotype Inference on Pedigrees

Without Recombinations

M.Y. Chan1, Wun-Tat Chan1, Francis Y.L. Chin1,�,
Stanley P.Y. Fung2, and Ming-Yang Kao3

1 Department of Computer Science, University of Hong Kong, Hong Kong
{mychan, wtchan, chin}@cs.hku.hk

2 Department of Computer Science, University of Leicester, Leicester, UK
pyfung@mcs.le.ac.uk

3 Department of Electrical Engineering and Computer Science, Northwestern
University, USA

kao@cs.northwestern.edu

Abstract. In this paper, a linear-time algorithm, which is optimal, is
presented to solve the haplotype inference problem for pedigree data
when there are no recombinations and the pedigree has no mating loops.
The approach is based on the use of graphs to capture SNP, Mendelian
and parity constraints of the given pedigree.

1 Introduction

The modeling of human genetic variation is critical to the understanding of the
genetic basis for complex diseases. Single nucleotide polymorphisms (SNPs) [6]
are the most frequent form of this variation, and it is useful to analyze haplotypes,
which are sequences of linked SNP genetic markers (small segments of DNA) on
a single chromosome. In diploid organisms, such as humans, chromosomes come
in pairs, and experiments often yield genotypes, which blend haplotypes for the
chromosome pair. This gives rise to the problem of inferring haplotypes from
genotypes.

Before defining our problem, some preliminary definitions are needed. The
physical position of a marker on a chromosome is called a locus and its state is
called an allele. Without loss of generality, the alleles of a biallelic SNP can be
denoted by 0 and 1, and a haplotype with m loci is represented as a length-m
string in {0, 1}m, and a genotype as a length-m string in {0, 1, 2}m. Haplotype
pair 〈h1, h2〉 is SNP-consistent with genotype g if where the two alleles of h1

and h2 are the same at the same locus, say 0 (respectively 1), the corresponding
locus of g is also 0 (1), which denotes a homozygous locus; otherwise, where
the two alleles of h1 and h2 are different, the corresponding locus of g is 2,
which denotes a heterozygous locus (i.e. SNP). A genotype with s heterozygous
loci can have 2s−1 SNP-consistent haplotype solutions. For example, genotype
� This research was supported by Hong Kong RGC Grant HKU-7119/05E and HKU

Strategic Research Team Fund.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 56–67, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Linear-Time Haplotype Inference on Pedigrees Without Recombinations 57

g = 012212 with s = 3 has four SNP-consistent haplotype pairs: {〈011111,
010010〉, 〈011110, 010011〉, 〈011011, 010110〉, 〈011010, 010111〉}.

D

M

S

F2102

2202

2000

1200

Fig. 1. Example of a pedigree with
4 nodes

A pedigree is a fundamental connected
structure used in genetics. Figure 1 shows
the pictorial representation of a pedigree with
4 nodes, with a square representing a male
node and a circle representing a female node
and children placed under their parents: in
particular, a father (node F), a mother (node
M) and two children (son node S and daugh-
ter node D). F-M-S (also F-M-D) is a father-
mother-child trio or simply trio. Further-
more, each individual node in the pedigree is
associated with a genotype. We assume that
there are no mating loops, i.e., no marriages
between descendants of a common ancestor, in the pedigree.

A Consistent Haplotype Configuration (with no recombinations) for a given
pedigree is an assignment of a pair of haplotypes to each individual node such
that (i) all the haplotype pairs are SNP-consistent with their corresponding
genotypes and (ii) the haplotypes of each child are Mendelian-consistent, i.e.
one of the child’s haplotype is exactly the same as one of its father’s and the
other is the same as one of its mother’s.

Haplotyping Pedigree Data (with No Recombinations) Problem
(HPD-NR): Given a pedigree P where each individual node of P is associated
with a genotype, find a consistent haplotype configuration (CHC) for P. ��
Wijsman [8] proposed a 20-rule algorithm, and O’Connell [5] described a geno-
type elimination algorithm, both of which can be used for solving the HPD-NR
problem. Li and Jiang [2] formulated the problem as an mn ×mn matrix and
solved HPD-NR by Gaussian elimination which could be solved in polynomial
time (O(m3n3)), where n is the number of individuals in the pedigree and m
is the number of loci for each individual. Xiao, Liu, Xia and Jiang [9] later im-
proved this to O(mn2 + n3 log2 n log log n). For the case without mating loops,
their algorithm runs in O(mn2 + n3) time. In this paper, we propose a new 4-
stage algorithm that can either find a CHC solution or report “no solution” in
optimal O(mn) time when there are no mating loops. Due to space constraints,
some proofs are omitted from this version.

2 The Algorithm

2.1 Stage 1

Definition 1. If there exists a father F, mother M and two children C1 and C2

in the pedigree and two locus i and j such that i and j are heterozygous loci for
F, M and C1 but are homozygous and heterozygous, respective, for C2, then we
say that the pedigree has a family problem. ��

58 M.Y. Chan et al.

Stage 1A - Checking for family problems: Since a pedigree with a fam-
ily problem has no CHC solution, our algorithm begins by checking for family
problems. Only if there are no family problems will the algorithm continue; oth-
erwise, “no solution” is reported. ��
Stage 1B – Generation of vector-pairs: For each trio in the given pedi-
gree, let the respective genotypes of the father F, the mother M and the child
C be: x1x2. . . xm and y1y2. . . ym and z1z2. . . zm where xi, yi, zi ∈ {0, 1, 2}.
We determine a pair of vectors (or vector-pair) each for the father, the mother
and the child, namely: 〈f1, f2〉, 〈m1, m2〉 and 〈c1, c2〉, respectively, where f1 =
x1,1x1,2 . . .x1,m and f2 = x2,1x2,2 . . . x2,m; m1 = y1,1y1,2 . . . y1,m and m2 =
y2,1y2,2 . . . y2,m; c1 = z1,1z1,2 . . . z1,m and c2 = z2,1z2,2 . . . z2,m. The vector-pairs
are determined in the following manner.

1. For each locus i, for f1 and f2:
(a) If xi = 0 then x1,i = x2,i = 0.
(b) If xi = 1 then x1,i = x2,i = 1.
(c) If xi = 2 and zi = 0 then x1,i = 0 and x2,i = 1.
(d) If xi = 2 and zi = 1 then x1,i = 1 and x2,i = 0.
(e) If xi = 2 and zi = 2 and yi = 0 then x1,i = 1 and x2,i = 0.
(f) If xi = 2 and zi = 2 and yi = 1 then x1,i = 0 and x2,i = 1.
(g) If xi = 2 and zi = 2 and yi = 2 then x1,i = ? and x2,i = ?.

2. m1 and m2 are similarly determined.
3. We assume C inherits f1 from F and m1 from M and thus 〈c1, c2〉 = 〈f1, m1〉.

Check if 〈c1, c2〉 is consistent with C’s genotype z1z2. . . zm. If not, report “no
solution”. ��

Observe that, if a particular node N in the pedigree belongs to k different trios,
then k vector-pairs, or 2k vectors, will be created for N in Stage 1. Let Φ(N)
be the multiset comprised of these k vector-pairs. It is sometimes convenient
to refer to the vectors rather than the vector-pairs. Thus, we let Γ (N) be the
multiset of 2k vectors, containing the two vectors of each vector-pair in Φ(N).
Note that we can define SNP-consistency and Mendelian-consistency in terms of
vector-pairs.

SNP-Consistency Condition: SNP-consistency is said to be maintained iff,
for all nodes N in the pedigree, each vector-pair in Φ(N) is SNP-consistent with
N’s genotype. Vector-pair 〈h1, h2〉 is said to be SNP-consistent with genotype
g if h1 and h2 are both 0 (respectively 1) at the same locus, the corresponding
locus of g is also 0 (1); otherwise, if h1 is 0 (respectively 1) and h2 is 1 (0) at
the same locus, the corresponding locus of g is 2 (2). ��
Mendelian-Consistency Condition [1, 7]: Mendelian-consistency is said to
be maintained iff, for all nodes N in the pedigree, if N is a child in a trio comprised
of F, M and N, then Φ(N) contains a vector-pair 〈c1, c2〉 = 〈f1, m1〉 where f1 ∈
Γ (F) and m1 ∈ Γ (M). ��
Stage 1C - Initial construction of G = (V, E): Let V be the multiset of all
the vectors created in Stage 1B and E be the set of red and brown edges defined
below.

Linear-Time Haplotype Inference on Pedigrees Without Recombinations 59

1. A red edge will be introduced to join the two vectors of each vector-pair
generated in Stage 1A and indicates that a ? appearing at locus i of both
vectors must be resolved differently in the later stages of the algorithm (the
two vectors can be different or the same at other locus positions depending
on whether the genotype has a 2 or not at that locus). [SNP-consistency]

2. For each F-M-C trio, let 〈f1, f2〉, 〈m1, m2〉 and 〈c1, c2〉 be vector-pairs in
Φ(F), Φ(M) and Φ(C), respectively, associated with this trio. Two brown
edges will be introduced, one connecting c1and f1, and the other connecting
c2and m1. A brown edge between two vectors means that the two vectors
must be the same at all locus positions. [Mendelian-consistency] ��

Example 1: Consider the pedigree with F (father), M (mother), S (son), D
(daughter) shown in Figure 1. Stage 1 produces the following graph G of 12 ver-
tices and 10 edges (6 red and 4 brown), comprised of two connected components.

?101

?101

(F):

(M):

(S):

Φ

Φ

Φ Φ(D):

red
brown

?100

?000 ?000

?000

1100 0101

1000 0000

1100 1000

Fig. 2. Graph G for Example 1

Definition 2. For any loci in a connected component G of G, we say
1. Locus i is resolved in G iff all vectors in G have 0 or 1 at locus i.
2. Locus i is unresolved in G iff all vectors in G have ? at locus i.
3. Otherwise, locus i is a mix of ? and non-? at i. ��

In Example 1, the connected component for trio F-M-S has one unresolved locus
(locus 1) and three resolved loci (locus 2, 3 and 4). Meanwhile, the compo-
nent for trio F-M-D has no unresolved loci and four resolved loci (locus 1, 2, 3
and 4).

Lemma 1. The time complexity of Stage 1 (Stage 1A, 1B and 1C) is O(mn),
where n is the number of nodes in the pedigree and m is the number of loci in each
genotype. Furthermore, after Stage 1, all loci are either resolved or unresolved
in each connected component of G, and G has O(n) nodes and edges. ��

In Stages 2 and 3, no vector-pairs will be added to or deleted from each Φ(N)
and the 0’s and 1’s of Stage 1 will remain as they are (unchanged). The unre-
solved loci of each component of G will become resolved with SNP-consistency
and Mendelian-consistency maintained, and components of G will be repeatedly
merged with the addition of connecting green (added in Stage 2) or white
(added in Stage 3) edges until G evolves into being a single connected compo-
nent. Each green or white edge is added between two vectors belonging in the

60 M.Y. Chan et al.

same Γ (N). This structured way of adding edges to make G connected can be
done given Lemma 2 below.

Lemma 2. If G has more than one connected component, then there exists a
Φ(N) for some N such that there are two vector-pairs in Φ(N) which belong to
two different components.

Proof. Suppose to the contrary that, for all N, the vector-pairs in Φ(N) are
all connected. We make use of the fact that the brown edges in G preserve
the connectivity of any two nodes in the pedigree, which we have assumed to
be connected. Therefore, if vector-pairs in Φ(N) are all connected for all N,
then all vectors are connected together in a single connected component, which
contradicts the assumption that G has more than one connected component. ��

As loci are resolved, each multiset Φ(N) may contain one or more copies of more
than one unique vector-pair. However, by the time all loci are resolved, for all
nodes N, each multiset Φ(N) must contain k copies of one unique vector-pair
〈h1, h2〉, which represents the haplotype-pair in the CHC for N, where k is the
number of trios to which N belongs. We need an additional condition:

Endgame-Consistency Condition: Endgame-consistency is said to be main-
tained iff, for all nodes N is the pedigree, N is Endgame-consistent. Node N is
said to be Endgame-consistent if there does not exist vector-pairs 〈u1, u2〉, 〈v1,
v2〉 ∈ Φ(N) such that the vector values at some heterozygous locus i and j (i �= j)
for u1, u2, v1 and v2 are a permutation of the four possibilities: 00, 01, 10 and
11; and Endgame-inconsistent otherwise. A connected component G of graph G
is said to be Endgame-consistent if there does not exist a node N and vector-
pairs 〈u1, u2〉, 〈v1, v2〉 in both Φ(N) and G such that the vector values at some
heterozygous locus i and j (i �= j) for u1, u2, v1 and v2 are a permutation of the
four possibilities: 00, 01, 10 and 11; and Endgame-inconsistent otherwise. ��
Our algorithm achieves a solution if, at the end of Stage 4, (a) graph G com-
prises a single connected component; (b) all loci are resolved in G; and (c) SNP-
consistency, Mendelian-consistency and Endgame-consistency are maintained.
However, our algorithm might report “no solution” if some N is Endgame-
inconsistent before the end of Stage 4.

2.2 Stage 2

We begin by defining an important subroutine called LOCUS RESOLVE. LO-
CUS RESOLVE(G, i, u, x) will resolve all ?’s at an unresolved locus i in a
connected component G (of G) starting with resolving the ? at locus i of vector
u in G to x ∈ {0, 1} in a manner consistent with red and non-red edges.

LOCUS RESOLVE(G, i, u, x):
1. Let vector u = u1u2. . . um. Set ui ← x

2. For each edge e = (u, v):

Linear-Time Haplotype Inference on Pedigrees Without Recombinations 61

3. Let vector v = v1v2. . . vm.
4. If vi = ? then
5. If e is a red edge then LOCUS RESOLVE(G, i, v, 1− x)
6. else LOCUS RESOLVE(G, i, v, x) ��

The idea of Stage 2 is to add O(n) green edges to connect components of G
together, where green edges are like brown edges requiring that the ?s in the two
vectors connected by the edge to be resolved the same. The way in which green
edges are added respects Endgame-consistency. In particular, green edges are
added to connect two unconnected vectors that have the value 0 at heterozygous
locus i.

Stage 2 – Adding Green Edges: For each locus i do the following:
1. For each node N, if locus i is heterozygous in N, (a) let u = u1u2. . . um in

Γ (N) such that ui = 0 (if any); and (b) for each other vector v = v1v2. . . vm

in Γ (N) such that vi = 0 do the following:
(a) For each locus j such that uj ∈ {0,1} and vj = ?, run LOCUS RESOLVE

(Gv, j, v, uj). In so doing, we say that we use u to resolve all unre-
solved loci of Gv.

(b) Likewise, for each locus j such that vj ∈ {0,1} and uj = ?, run LOCUS
RESOLVE(Gu, j, u, vj). Thus, we use v to resolve all unresolved
loci of Gu.

(c) Add a green edge joining u and v.
2. Make G acyclic, by removing green edges only. ��

Lemma 3. The time complexity of Stage 2 is O(mn). Furthermore, after Stage
2, all loci are either resolved or unresolved in each connected component of G,
and G has O(n) nodes and edges.

Proof. There are two aspects for the time complexity of Stage 2. Firstly, only
unresolved loci in each component are considered, and thus a locus, once resolved,
will not be considered again even upon the component’s subsequent joining with
other components by green edges. In this way, O(mn) time complexity can be
achieved. Secondly, when heterozygous locus i is considered, at most n−1 green
edges will be added to G and thus G will still have O(n) edges. Step 2 is intended
to prevent an explosion of green edges by eliminating any cycles among vectors
in Γ (N) by removing green edges and can be done in O(n) time by a traversal
of G and is only done once for each locus. Note that, after Stage 2, there may
still exists unconnected vectors u and v in Γ (N) with ui = vi = 0 for some
heterozygous locus i in N; such u and v will become properly connected in
Stage 3. ��
Stage 2 ensures that each connected component has only resolved and unre-
solved loci. This property is important. Lemma 4 essentially tells us that we can
arbitrarily resolve unresolved loci in any such component of G, and it will not
affect Endgame-consistency in the sense that no matter how the unresolved loci
are resolved, either Endgame-consistency will be maintained or not maintained
within that component. Stage 1A and Stage 2 combined ensure the mother-father
property of Lemma 5.

62 M.Y. Chan et al.

Lemma 4. If a component G (of G) has only resolved and unresolved loci, then
all possible ways of resolving ?’s in vectors in G such that SNP-consistency and
Mendelian-consistency are maintained will either all make G Endgame-consistent
or all make G Endgame-inconsistent.

Proof. Consider a particular resolution of ?’s in the vectors in G such that
SNP-consistency and Mendelian-consistency are maintained. Suppose Endgame-
inconsistency occurs at node N, i.e. there exist two vector-pairs 〈x1, x2〉, 〈y1,
y2〉 ∈ Φ(N). We can assume, without loss of generality, that the value at some
heterozygous locus i and j (i �= j) for x1, x2, y1 and y2 are 00, 11, 01 and 10
respectively. Consider the following three cases for the state of locus i and j
prior to the resolution:

Case 1: Suppose locus i and j were both unresolved in G. Then, for all other
possible resolutions, the values at locus i and j for x1, x2, y1 and y2 would
either be 00, 11, 01 and 10 respectively, or 11, 00, 10 and 01 respectively,
and Endgame-consistency would also be violated.

Case 2: Suppose only one of locus i and j was unresolved, say i, in G. Then,
for all other possible resolutions, the values at locus i and j for x1, x2, y1

and y2 would either be 00, 11, 01 and 10 respectively, or 10, 01, 11 and 00
respectively, and Endgame-consistency would also be violated.

Case 3: Suppose both locus i and j were not unresolved (i.e., resolved). Then,
the Endgame-inconsistency existed prior to any resolution of ?’s. ��

Lemma 5. Suppose (a) M and F are the mother and father of two unconnected
trios in G after Stage 2 and (b) the given pedigree has no family problems. Then,
for all possible way of resolving ?s in vectors in the two trios such that SNP-
consistency and Mendelian-consistency are maintained, M and F are either both
Endgame-consistent or both Endgame-inconsistent.

Proof. Suppose F is Endgame-inconsistent. Without loss of generality, let the
values at locus i and j for x1, x2, y1 and y2 be 00, 11, 01 and 10 respectively
where 〈x1, x2〉, 〈y1, y2〉 ∈ φ(F). This means locus i and j are heterozygous loci
for F. Since the two trios are unconnected by a green edge, locus i and j are
also heterozygous for M also. Let C1 and C2 be the two respective children of
F connected to 〈x1, x2〉 and 〈y1, y2〉 by a brown edge. In the absence of family
problems and green edges connecting the two trios, there are only three cases to
consider: (i) when locus i and j are both heterozygous for both C1 and C2; (ii)
when locus i and j are both heterozygous for C1 and both homozygous for C2;
and (iii) when locus i is heterozygous for C1 and homozygous for C2 while locus
j is homozygous for C1 and heterozygous for C2. It can be readily shown that
in all three cases, M would also be Endgame-inconsistent. ��

2.3 Special Case of a Connected Graph

Let us consider the special case where G becomes a connected graph (i.e. a single
connected component) after Stage 2. By Lemma 3, we are left only with at most
two kinds of locus in G: resolved and unresolved. To resolve all unresolved loci

Linear-Time Haplotype Inference on Pedigrees Without Recombinations 63

in G (if any), we do the following. Arbitrarily pick a vector u of G. For all
unresolved locus i, we simply run LOCUS RESOLVE(G, i, u, 0). Note that
running LOCUS RESOLVE(G, i, u, 1) would have worked equally well (Lemma
4), the effect being all 1’s become 0 and all 0’s become 1 at locus i and gives
another solution. Finally, we check that that all N are Endgame-consistent and
report “no solution” if any N were Endgame-inconsistent. This procedure for
dealing with G when G is a single connected component will later be called
Stage 4.

Lemma 6. If G is a connected graph after Stage 2, we can either achieve a
solution that represents a CHC for the given pedigree, or report “no solution”
when there is no CHC for the pedigree, in O(mn) time.

Proof. By Lemma 4, we do not have to try all possible resolutions; one will do.
The time complexity of resolving the remaining k unresolved loci in the manner
described above is O(kn) since LOCUS RESOLVE runs in O(n) time. Checking
all N for Endgame-consistency can be done in O(mn) time. ��

Lemma 7. Suppose G is a connected graph after Stage 2. If there exists a CHC
solution, there are 2s different CHC solutions, where s is the number of unre-
solved loci in G, unless every node in the pedigree has exactly s heterozygous loci
in which case there are 2s−1 different CHC solutions.

Proof. If there is a CHC solution, it is easy to see that it will remain a solution
if all values at a particular unresolved locus were reversed (i.e. 0 changed to 1
and vice versa) because SNP-consistency, Mendelian-consistency and Endgame-
consistency will be maintained. Thus, there are 2s possible CHC solutions alto-
gether, as long as there exists at least one node with more than s heterozygous
loci. However, when each node in the pedigree has exactly s heterozygous loci,
i.e. all the other loci are homozygous, the number of different CHC solutions is
2s−1. ��

2.4 Stage 3

After Stage 2, suppose G is left with r connected components where r > 1, with
each component having only resolved and unresolved loci. The idea of Stage 3
is to connect components of G together so that a single connected component
results. After G becomes a single connected component, we can continue in the
manner described in the previous section for a single connected component. Note
that white edges will be treated as “non-red” edges by LOCUS RESOLVE.

As it turns out, we can connect components in a structured way with the help
of a support graph H . This we do in Stage 3A.

Stage 3A – Constructing Support Graph H :
1. For each node N in the pedigree, if N is unmarried, Γ (N) cannot intersect

with more than one connected component of G. Nothing is added to H .
Otherwise, suppose N is married to M in the pedigree. Let GN denote the set
of connected components in G that intersect Γ (N) but not Γ (M). Similarly,

64 M.Y. Chan et al.

GM denote those that intersect Γ (M) but not Γ (N), and GMN denote those
that intersect both Γ (M) and Γ (N). Now,
(a) Pick a vector from Γ (N) from each connected component in GN ∪GMN .

Connect the k chosen vectors with k − 1 edges.
(b) Next, pick a vector from Γ (M) from each connected component in GM .

Connect them to one of the vectors in Γ (M) from a connected component
in GMN .

2. Next, we introduce k′ − 1 edges to connect up the k′ vectors in H that are
in the same component of G, and for each such edge (u, v) introduced, we
label the edge with 0 if there is a path with an even number of red edges
between u and v in G; otherwise, we label it with 1.

Lemma 8. If there are no mating loops in the pedigree, H is acyclic.

Proof. We claim that, if there are no mating loops (cycles) in the pedigree, any
two components both intersect the Γ of at most two nodes. Furthermore, if
there are two such nodes, they are the parents within two unconnected trios.
This being the case, by making sure there are no cycles between a node and its
spouse in H , as we have done in Step 1, there are no cycles in H . To prove the
claim, we make use of the fact that the brown edges in G preserve and reflect
the connectivity of any two nodes in the pedigree. ��

Lemma 9. H has O(n) edges, and can be constructed in O(n) time. ��

The idea is that we will label each edge of support tree H with 0 and 1. Some
edges have been labeled in Stage 3A and others have not. We are mainly inter-
ested in the label of edge (u, v) in H where u and v are unconnected in G. Such
a labeling will be done in Stage 3C. If the label is 0, then we would connect
(unconnected) u and v with a white edge in G. Otherwise, we would instead
connect u and the vector that is connected to v by a red edge. This is how H
is used. Note that, a CHC solution of the pedigree corresponds a labeling of the
edges of H . Our challenge is to finding that labeling.

In order to assist the labeling, we construct a parity constraint graph J ,
which is constructed in Stage 3B. One of the essential differences between H
and J is that H shows connections between “neighboring” components while J
captures all parity constraints between far-apart components.

Stage 3B – Construct parity constraint graph J :
1. Nodes in J are the same as the nodes in H .
2. Add an edge between two vectors u and v in J if (u, v) is labeled in H .

Furthermore, the label of this edge in J is the same as its label in H .
3. If there is a path between two vectors u and v in H and a heterozygous locus

i such that u and v are resolved (has 0 or 1) at locus i but all other vectors
(if any) in the path are unresolved at locus i, add an edge (u, v) labeled L
between u and v in J , where L is 1 if u and v are resolved differently at
locus i and 0 otherwise, provided there is no such edge already in J . Note
that there may still be two edges between any two pairs of vectors u and v
in J , one labeled 0 and the other labeled 1, which is an odd cycle.

Linear-Time Haplotype Inference on Pedigrees Without Recombinations 65

4. Check that all cycles in J have an even number of edges labeled 1. Report
“no solution” and stop if there is a cycle in J with an odd number of edges
labeled 1.

5. Let graph K be a copy of graph J . Note that K is not necessarily connected.
To make K connected, we add edge (u, v) to K when u and v are in different
components in K where (u, v) is an edge in H . This is always possible because
H is a connected graph and K and H have the same set of vectors as nodes.
We arbitrarily label this edge with 0 and call the corresponding edge in H
a free edge because we have the freedom to label (u, v) with 1 instead. We
continue adding edges until K is connected. ��

Lemma 10. If H has no cycles but J has an odd cycle, then there is no CHC
solution. ��

Lemma 11. K has at most O(mn) edges and can be constructed in O(mn)
time. ��

Stage 3C – Complete labeling of H :
1. Traverse K, computing, for each node v in K, whether the number of 1-

labeled edges in the path from a fixed node t in K is odd or even, i.e. parity.
2. For each unlabeled edge (u, v) in H : if u and v have same parity in K then

label edge (u, v) in H with 0; else with 1. ��

Lemma 12. All edges in H can be labeled with 0 or 1 in O(mn) time in Stage
3C, and the labels in H are consistent with the parity constraints specified in J
in the sense that the parity between any two vectors u and v specified in J is
consistent with the number of 1-label edges in the path between u and v in H. ��

Lemma 13. Suppose the pedigree has a CHC solution, which corresponds to a
labeling of edges in H where free edge e is labeled α ∈ {0, 1}. Then, changing
the label on e to 1 − α will result in a labeling that also corresponds to a CHC
solution. ��

Stage 3D – Adding White Edges to G: For each edge (u, v) in H where u
is in say component Gu and v in Gv:
1. If edge is labeled 1 then let x ← vector adjacent to v by red edge else x← v.
2. Add white edge between u and x.
3. Use u to resolve unresolved loci in Gv.
4. Use x to resolve unresolved loci in Gu.
5. G now has one less component.

Lemma 14. Stage 3D can be done in O(mn) time, and after Stage 3D, G will
be a single connected component with only unresolved and resolved loci. ��

Lemma 15. If the pedigree has a CHC solution, Stage 3D maintains Endgame-
consistency.

66 M.Y. Chan et al.

Proof. Suppose, to the contrary, that somenode Nbecomes Endgame-inconsistent
after Stage 3D. Without loss of generality, let the values at locus i and j for x1, x2,
y1 and y2 be 00, 11, 01 and 10, respectively, where 〈x1, x2〉, 〈y1, y2〉 ∈ Φ(N). We
say that the two vectors are Endgame-inconsistent.

Consider the situation prior to Stage 3D. Since the pedigree has a CHC so-
lution, given Lemma 4, 〈x1, x2〉 and 〈y1, y2〉 must belong to the different com-
ponents. Now suppose 〈x1, x2〉 and 〈y1, y2〉 become connected during Stage 3D,
in particular, after the addition of a white edge e. Before the addition of white
edge e, suppose 〈x1, x2〉 belonged to component G1 and 〈y1, y2〉 belonged to
component G2. There are four cases to consider:

Case 1: e connects 〈x1, x2〉 and 〈y1, y2〉. White edge e corresponds to an edge
in H that is labeled with a unique parity. Suppose e connects x1 and y1 and
is labeled 0. This white edge will make x1 and y1 equal and therefore the
value of locus i and j cannot possibly become 00 for x1 and 01 for y1.

Case 2: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3, y4〉
∈ Φ(N). Since pedigree has a CHC solution and G1 has only resolved and un-
resolved loci, according to Lemma 4, G1 must be Endgame-consistent. This
implies that 〈x1, x2〉 and 〈x3, x4〉, which are in G1, are Endgame-consistent.
Likewise, 〈y1, y2〉 and 〈y3, y4〉 must also be Endgame-consistent. Because
of the argument in Case 1, 〈x3, x4〉 and 〈y3, y4〉 must also be Endgame-
consistent. This makes it impossible for 〈x1, x2〉 and 〈y1, y2〉 to be Endgame-
inconsistent.

Case 3: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3,
y4〉 ∈ Φ(M) and M is N’s spouse. Suppose 〈u1, u2〉 ∈ φ(M) belongs to the
same trio as 〈x1, x2〉 and suppose 〈v1, v2〉 ∈ φ(M) belongs to the same
trio as 〈y1, y2〉. According to the Lemma 5, 〈u1, u2〉 and 〈v1, v2〉 are also
Endgame-inconsistent. Thus, we can consider 〈u1, u2〉 and 〈v1, v2〉 instead
of 〈x1, x2〉 and 〈y1, y2〉, and accordingly, apply the arguments of Case 2.

Case 4: e connects 〈x3, x4〉 in G1 and 〈y3, y4〉 in G2 where 〈x3, x4〉 and 〈y3,
y4〉 ∈ Φ(M) and M is neither N nor N’s spouse. Assuming no mating loops,
this case does not exist. ��

2.5 Stage 4

Now we deal with the single connected component G as described before:

Stage 4 – Dealing with Single Component:
1. Arbitrarily pick a vector u of G. For all unresolved locus i, run LOCUS

RESOLVE(G, i, u, 0).
2. For all N, check Φ(N) for Endgame-consistency and report “no solution” if

it is not maintained.

Theorem 1. For a given pedigree, we can either achieve a solution that rep-
resents a CHC for the given pedigree, or report “no solution” when there is no
solution, in O(mn) time where n is the number of nodes in the pedigree and m
is the number of loci. ��

Linear-Time Haplotype Inference on Pedigrees Without Recombinations 67

3 Concluding Remarks

In this paper, a linear-time algorithm is presented to solve the haplotype problem
for pedigree data when there are no recombinations and the pedigree has no
mating loops. We are currently extending the algorithm to handle mating loops.

For the haplotyping problem with recombinations, the problem becomes in-
tractable even when at most one recombination is allowed at each haplotype of
a child, or when the problem is to find a feasible haplotype with the minimum
number of recombinations (even without mating loops) [4]. However, there is
still much scope for further study. For example, in practice, pedigree data often
contains a significant amount of missing alleles (up to 14-15% of the alleles be-
longing to a block could be missing in the pedigree data studied). In some cases,
the deduction of the missing information on alleles is possible. The goal is then
to devise an efficient algorithm to determine as many missing alleles as possible.

References

1. R. Cox, N. Bouzekri, et al. Angiotensin-1-converting enzyme (ACE) plasma concen-
tration is influenced by multiple ACE -linked quantitative trait nucleotides. Hum.
Mol. Genet., 11:2969–2977, 2002.

2. J. Li and T. Jiang. Efficient rule-based haplotyping algorithms for pedigree data.
RECOMB’03, pages 197–206, 2003.

3. J. Li and T. Jiang. Efficient inference of haplotypes from genotypes on a pedigree.
J. Bioinfo. Comp. Biol, 1(1):41–69, 2003.

4. J. Li and T. Jiang. An exact solution for finding minimum recombinant haplo-
type configurations on pedigrees with missing data by integer linear programming.
RECOMB’04, pages 20–29, 2004.

5. J.R. O’Connell. Zero-recombinant haplotyping: applications to fine mapping using
SNPs. Genet. Epidemiol., 19 Suppl 1:S64–70, 2000.

6. E. Russo et al. Single nucleotide polymorphism: Big pharmacy hedges its bets. The
Scientist, 13, 1999.

7. N. Wang, J.M. Akey, K. Zhang, K. Chakraborty, and L. Jin. Distribution of recom-
bination crossovers and the origin of haplotype blocks: The interplay of population
history, recombination, and mutation. Am. J. Hum. Genet.., 11:1227–1234, 2002.

8. E.M. Wijsman. A deductive method of haplotype analysis in pedigrees. Am. J.
Hum. Genet., 41(3):356–373, 1987.

9. J. Xiao, L. Liu, L. Xia and T. Jiang. Fast Elimination of Redundant Linear Equa-
tions and Reconstruction of Recombination-Free Mendelian Inheritance on a Pedi-
gree. Manuscript.

Phylogenetic Network Inferences Through Efficient
Haplotyping

Yinglei Song1,�, Chunmei Liu1, Russell L. Malmberg2, and Liming Cai1,�

1 Dept. of Computer Science, Univ. of Georgia, Athens GA 30602, USA
{chunmei, song, cai}@cs.uga.edu

2 Department of Plant Biology, University of Georgia, Athens GA 30602, USA
russell@plantbio.uga.edu

Abstract. The genotype phasing problem is to determine the haplotypes of
diploid individuals from their genotypes where linkage relationships are not
known. Based on the model of perfect phylogeny, the genotype phasing problem
can be solved in linear time. However, recombinations may occur and the per-
fect phylogeny model thus cannot interpret genotype data with recombinations.
This paper develops a graph theoretical approach that can reduce the problem to
finding a subgraph pattern contained in a given graph. Based on ordered graph
tree decomposition, this problem can be solved efficiently with a parameterized
algorithm. Our tests on biological genotype data showed that this algorithm is ex-
tremely efficient and its interpretation accuracy is better than or comparable with
that of other approaches.

1 Introduction

An important yet challenging problem in human genetics is the study of DNA differ-
ences among individuals. The variations of DNA sequences among a population of
individuals often provide information on the genetic traits of many complex diseases.
Single Nucleotide Polymorphisms (SNPs) are one of the major types of such variations.
The chromosome of a diploid individual generally contains two copies of nucleotide se-
quences that are not completely identical. SNP sites, often called heterozygous sites, are
locations where at least two different nucleotides occur in a large percentage of the pop-
ulation. For a region of interest in a chromosome, a description of its nucleotides from
a single copy is called a haplotype, while that of the conflated data for the two copies
is called a genotype [8]. In general, haplotypes are more informative on the genetic
causes of diseases than genotypes; the goal of the genotype phasing problem is thus to
determine the haplotypes from their corresponding genotype data.

Both the genotype and haplotypes of an individual can be determined with biological
experiments. However, experimental techniques for haplotyping are more expensive.
An extensively used procedure for haplotyping is thus to determine the genotypes of a
set of individuals experimentally and then infer the haplotypes with computational ap-
proaches. Programs based on statistical models [17,7,21,23,28] have been developed to
solve the genotype phasing problem. For example, PHASE [28] exhaustively enumer-
ates all possible sets of haplotypes that can resolve the given genotypes; an EM-based

� To whom all correspondence should be addressed.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 68–79, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Phylogenetic Network Inferences Through Efficient Haplotyping 69

00000

0000100010

00110 01010 10001

02210
22022

Genotypes

00110
01010
10001

Haplotypes

A Perfect Phylogenetic Tree

c4 c5

c3 c2 c1

(a) (b)

1g 1h

2g 2h

3h

Fig. 1. (a) The genotype matrix and the corresponding haplotypes resolving the genotypes, i.e.,
h1, h2 resolve g1, and h2, h3 resolve g2. (b) A perfect phylogenetic tree for the genotypes in (a);
edges in the tree are labelled with a column in the genotype matrix.

algorithm is then used to select the one with the maximum likelihood. HAPLOTYPER
[21] partitions the genotype data into segments and then uses Gibbs sampling to resolve
the genotypes in each segment. The haplotypes for all segments are combined to form
an overall solution.

Various phylogeny models have been introduced for the inference of phylogenetic re-
lationships among haplotypes as well as haplotypes themselves. The parsimony model
assumes that the solution for genotype phasing contains a minimum number of hap-
lotypes. Minimizing the number of haplotypes is NP-hard [25]; a few practically effi-
cient heuristics [4] and optimal algorithms [10,11] have been developed. The perfect
phylogeny model [8] considers the evolution of haplotypes; it assumes that the haplo-
types resolving the given genotypes are the leaves of a perfect phylogenetic tree (see
Figure 1). Based on graph matroid theory, efficient optimal algorithms [6,8,5,15] have
been developed for haplotyping under the assumption of perfect phylogeny.

However, the perfect phylogeny model is not entirely satisfactory because recom-
binations between SNP sites have been observed in a significantly increased amount
of genotype data [22]. New approaches are thus needed to include recombinations in
models and algorithms for genotype phasing to correctly interpret these genotypes.
The first phylogenetic model that includes the recombinations of haplotypes was de-
veloped in [29]. Assuming recombinations may not happen very often, efficient algo-
rithms have been developed to construct “galled trees” where the recombination cycles
are node disjoint and estimate a lower bound for the number of recombinations needed
[12,16,19,20,26]. More recently, a decompsosition theory for phylogenetic networks is
developed in [9]. Based on the new concept of “blobbed tree”, the underlying maximal
tree structure of a phylogenetic network can be efficiently computed from the genotype
data.

In this paper, we consider the more general and yet more difficult problem of phylo-
genetic network inference through haplotyping where recombination cycles are allowed
to share nodes and edges. We introduce a new graph theoretical model for genotype
phasing. In particular, we use a genotype graph to describe all genotypes and reduce the
problem to finding a certain subgraph pattern in the genotype graph. An efficient param-
eterized algorithm can be developed to solve this problem based on ordered graph tree

70 Y. Song et al.

decomposition. Our algorithm requires the number of heterozygous sites to be small in
each taxon. In practice, a genotype data set can be partitioned into contiguous blocks
such that the number k of heterozygous sites in a block is a small number (e.g., k ≤ 5).
Our algorithm can be used to resolve the genotypes in these blocks and the the resulted
haplotypes can thus be combined to form an overall solution with a dynamic program-
ming approach proposed in [6].

We have implemented this algorithm and compared its performance with that of
PHASE and HAPLOTYPER on 192 biological genotype data sets downloaded from
the SeattleSNPS database [3]. Our testing results showed that this algorithm is sig-
nificantly faster and can achieve better interpretation accuracy than both PHASE and
HAPLOTYPER on genotype data sets that contain recombinations. In addition to an ef-
ficient and accurate solution to the phylogenetic network inference problem, this graph
theoretical model can possibly be used to solve a few other problems associated with
haplotyping, such as the perfect phylogeny, the galled tree inference [29,9], phyloge-
netic netoworks with bounded number of recombinations [27], and a few incomplete
perfect phylogeny problems [2,14,18].

2 Models and Algorithms

2.1 Problem Description

We use 0 or 1 to represent a homozygous site where the two copies of the chromosome
contain the same nucleotide and 2 for a heterozygous site. A genotype can thus be
described with a string of 0, 1 and 2’s. Characters in such a string are also called alleles.
The input of the genotype phasing problem is assumed to contain m genotypes of length
n, which form a genotype matrix M . The solution is a haplotype matrix N , where each
row is a string of length n containing 0 and 1’s. In particular, for each genotype gi in
M , there exists two haplotypes hi1 and hi2 in N such that gi can be resolved by hi1

and hi2 . For example, Figure 1(a) shows two genotypes resolved by three haplotypes.
The perfect phylogeny model assumes that the haplotypes in N are from the leaves of

a rooted perfect phylogenetic tree. Internal nodes of the tree are intermediate haplotypes
during the evolution and each edge in the tree is labelled by a column of matrix M and
represents a mutation event that occurs on the corresponding site. In addition, each col-
umn in M can only be used to label at most one edge in the tree. Haplotyping under the
framework of perfect phylogeny can be solved in linear time (see Figure 1(b)). How-
ever, solutions compatible with the perfect phylogeny model only exist for genotype
matrices that do not contain conflicting columns. Two columns i and j in M conflict if
they contain all of the four possible pairs (0, 0), (0, 1), (1, 0), and (1, 1) [8]; these pairs
may exist in a population if a recombination has occurred. Recent study has shown that
recombinations are biologically important for explaining genotype matrices that con-
tain conflicting columns. As an example, Figure 2(b) provides a phylogenetic network
for the set of genotypes in Figure 2(a).

In general, a recombination event between two haplotypes generates a new haplo-
type. Each character in this new haplotype is inherited from one of its parent haplotypes.
In this paper, we only consider the single-crossover recombination. In particular, the re-
sulting haplotype is a sequential combination of a prefix of one parent haplotype and a

Phylogenetic Network Inferences Through Efficient Haplotyping 71

000000

010000000001

010001

110001

001001

001011001101

001221
222021
222201

001101
001011
110001

Genotypes Haplotypes

A Phylogenetic Network

c6 c2

c3

c4 c5 c1

recombination

(a) (b)

Fig. 2. (a) The genotype matrix and the corresponding haplotypes for two individuals. (b) A
phylogenetic network with a single cross-over recombination for the genotypes in (a); edges that
represent mutations are labelled with a column in the genotype matrix.

suffix of the other one. Single-crossover recombinations contain only one “cross-over”
and are one of the most important types of recombinations [9,12,27].

We thus relax the constraints of the perfect phylogeny to model the recombinations
between SNP sites. In particular, a m×n genotype matrix M can be resolved by a 2m×
n haplotype matrix if there exists a phylogenetic network that satisfies the constraints
proposed in the following definition:

Definition 1. Let N be a 2m×n matrix, a phylogenetic network P for N is a directed
connected acyclic graph that satisfies the following properties:

1. Each vertex in P is labelled by a haplotype of length n;
2. Each of the 2m rows in N labels one of the vertices in P ;
3. No vertex in P has more than 2 incoming edges; exactly one vertex in P has zero

incoming edges;
4. A vertex with exactly one incoming edge is labelled with a haplotype that is the

result of mutations (but only from 0 to 1) from the haplotype labeling the precedent
vertex. This edge is labelled with some column of N .

5. A vertex with exactly two incoming edges, called a recombined vertex, is labelled by
a haplotype that is the result of a recombination of two haplotypes that respectively
label the two precedent vertices. This edge is not labelled by any column of N .

We propose to solve the genotype phasing problem by finding the phylogenetic net-
work with the minimum number of recombinations. In general, a genotype data set can
be partitioned into contiguous blocks, each containing a small number of heterozygous
sites [6]. Therefore, we consider a simplified instance for this problem, where the num-
ber of heterozygous sites in each taxon is bounded by a small constant k. We thus can
efficiently enumerate all 2k possible haplotypes that can resolve each of the genotypes.
Given a set of genotypes, we construct a genotype graph as follows. We enumerate
the haplotypes for all genotypes and represent each of the enumerated haplotypes with
a vertex. A directed edge is generated to connect from vertex u to v if hu evolves to

72 Y. Song et al.

121
212
102
222
112

000

001
010

100

011 110 101

111

Genotype Matrix

recombination

The Genotype Graph

(a) (b)

Fig. 3. (a) A genotype matrix with conflicting columns (columns 2 and 3). (b) The genotype
graph constructed for the genotype matrix in (a), where thick directed lines represent a phyloge-
netic network contained in it; dashed and dotted lines represent principal and recombinant edges
respectively. For simplicity, these two types of edges are only partially drawn and genotype ver-
tices are not shown in the figure.

hv by a single 0 to 1 mutation. In addition, we find all vertex triples (u, v, g) in G
such that g can be obtained from u and v by a single cross-over recombination. We
connect vertices in each triple into a triangle with nondirected recombinant edges. We
generate an additional genotype vertex gi for the ith genotype, and for each pair of
the haplotypes hi1 and hi2 that can explain gi, we connect the corresponding vertices
and gi into a triangle with nondirected principal edges. The resulting graph is a mixed
graph.

It is not difficult to see that any phylogenetic network for some haplotype matrix
that resolves a given genotype matrix can be obtained from a graphic pattern con-
tained in its genotype graph. To guarantee that every genotype is resolved by a pair
of haplotypes in the phylogenetic network, we require that, every genotype vertex
gi is edge-dominated, in other words, there exists a triangle that contains gi as one
of its vertices and the other two vertices are both in the phylogenetic network.
Figure 3(b) partially shows the genotype graph constructed from the genotype matrix in
Figure 3(a).

We would like to point out that the above construction of the genotype graph does
not result in easy problems. For example, the haplotyping Maximum Resolution (MR)
problem remains difficult after being formulated as a graph theoretic problem by enu-
merating all haplotypes for each genotype [13]. It remains NP-hard even if the expo-
nential time reduction is assumed cost-free. We suspect that on introduced genotype
graphs, the problem of finding a phylogenetic network with the minimum number of
recombinations remains intractable.

2.2 Ordered Tree Decomposition

Definition 2. Let G = (V, E) be a directed acyclic graph, where V is the set of vertices
in G, E denotes the set of edges in G. Pair (T, X) is an ordered tree decomposition of
graph G if it satisfies the following conditions:

Phylogenetic Network Inferences Through Efficient Haplotyping 73

a b

cd

e

f

g h

abc

adc

aed dcf

gfh

root

(a) (b)

Fig. 4. (a) An example of a directed acyclic graph. (b) An ordered tree decomposition for the
graph in (a).

1. T = (I, F) defines a rooted tree, the sets of vertices and edges in T are I and F
respectively,

2. X = {Xi|i ∈ I, Xi ⊆ V }, and ∀u ∈ V , ∃i ∈ I such that u ∈ Xi,
3. ∀(u, v) ∈ E, ∃i ∈ I such that u ∈ Xi and v ∈ Xi,
4. ∀i, j, k ∈ I , if k is on the path that connects i and j in tree T , then Xi ∩Xj ⊆ Xk,
5. ∀Xi ∈ X , Xj ∈ X , where i is on the path from the root to j, there do not exist

vertices u, v such that u ∈ Xj , v ∈ Xi and there is a directed path from u to v
in G.

The tree width of the ordered tree decomposition (T, X) is defined as maxi∈I |Xi| − 1.

Figure 4 shows an example of a directed acyclic graph and an ordered tree decom-
position for it. Ordered tree decomposition is a variant of the traditional tree decom-
position [24], For directed acyclic graphs, we slightly modify the original definition of
tree decomposition to include additional information on the topological order of graph
vertices. We show later in the paper that, based on an ordered tree decomposition, a
dynamic programming approach can be developed to find graphic patterns that satisfy
certain topological constraints in a directed acyclic graph.

There exists an efficient algorithm that can construct an ordered tree decomposion for
a directed acyclic graph G. Indeed, we can slightly modify the greedy fill-in heuristic
[1] used for the efficient construction of graph tree decompositions. In particular, in the
fill-in procedure, we can remove a vertex that contains no outgoing edges and connect
its neighbors into a clique with nondirected edges. It is not difficult to verify that the
tree decomposition generated this way for G is an ordered one.

2.3 The Algorithm

Without loss of generality, we assume that the given tree decomposition is a binary tree.
Each tree node is associated with a dynamic programming table with multiple entries,
the table stores the partial optimal solutions for subgraphs induced by vertices in the
subtree rooted at that tree node. The algorithm follows a general bottom-up process
to fill the dynamic programming tables in all tree nodes, starting with the leaves of the

74 Y. Song et al.

tree [1]. The table for a tree node with vertices {v1, v2, · · · , vt} contains t columns, each
column stores the decision bits for each vertex in the tree node. A table entry consists of
a certain combination of the selection bits for all vertices in the tree node. The decision
bit for a haplotype vertex is 1 if it is included in the partial solution and otherwise 0.
For a genotype vertex, the decision bit is set to be 1 if it has been edge-dominated and
otherwise 0. Two additional columns V and N are also included in the table to store the
validity and the number of recombinations in the partial optimal solutions.

For each triangle that represents a recombination event, the algorithm finds the tree
nodes that contain all its three vertices and marks the one with the minimum height.
To compute the table for a leaf node of the tree, the algorithm enumerates all pos-
sible combinations of the selection bits for all its vertices. It also determines the va-
lidity and number of recombinations for these valid ones. An entry is invalid if the
subgraph induced by the selected vertices does not satisfy the topological constraints
for a phylogenetic network. For an internal node Xi with child nodes Xj and Xk,
the algorithm needs to query the tables of Xj and Xk to compute the values of V
and N for each entry. In particular, for a given entry ei in the table for Xi, the com-
putation queries only valid entries in the tables for Xj and Xk whose selection bits
on vertices in Xi ∩ Xj and Xi ∩ Xk are consistent with ei. The algorithm checks
all possible combinations from queried entries ej , ek in the tables for Xj and Xk.
ei is valid if there exists an entry pair (ej , ek) such that the vertices selected in both
ej and ek can form a subgraph that satisfies the topological constraints of a phylo-
genetic network. The number of recombinations Sij for this entry pair can be com-
puted by adding the N values for ej and ek together. Sij is the potential for entry pair
(ej , ek). The algorithm then finds the minimum potential over all queried entry pairs
and add it to the number of selected marked triangles in Xi to obtain the N value
for ei.

The vertices with selection bit 1 in ei and ej , ek need to be checked to determine
whether the ei is consistent with them. In particular, for a vertex u in Xi ∩ Xj , if u
represents a haplotype, ei and ej must set the same selection bit for u to be consistent.
For a genotype vertex v ∈ Xi, the algorithm considers its selection bits in both ej and
ek together to determine whether ei and ej , ek are consistent on v. The principles for
checking this consistency are as follows:

1. ei, ej and ek are consistent on v if its selection bit is 1 in ei and it is edge-dominated
by an edge whose two ends have selection bit 1 in ei.

2. ei, ej and ek are consistent on v if its selection bit is 0 in ei and the vertices with
selection bit 1 in ei do not edge-dominate ei, in addition, selection bits for v in both
ej and ek are 0.

3. ei, ej and ek are consitent on v if its selection bit is 1 in ei and the selection bit of
v for at least one of ej and ek is 1.

Figure 5 provides an example for computing the entries in the table for an internal
tree node Xi = {a, b, g1}, with two child nodes Xj = {b, c, g1} and Xk = {a, d, g1},
where g1 is a genotype vertex. Since Xi ∩ Xj = {b, g1}, and Xi ∩ Xk = {a, g1},
to compute the values of V and N for an entry e = (1, 1, 1) in the table for Xi, the
algorithm needs to query all the valid entries with selection bit 1 for b in the table for
Xj and those with selection bit 1 for a in the table for Xk. In addition, in cases where

Phylogenetic Network Inferences Through Efficient Haplotyping 75

1

iX

iX

jX kX
jX kX

1abg

1bcg 1adg

a

a

b 1g

b c d1g 1g

V

V V

N

N N

1 1 1
1 0

1

1

1 1 1 2
0 1 0 1 3

1 1 1 1 1
1 0 0 1 5

(a) (b)

bottom up

Fig. 5. (a) An ordered tree decomposition, where Xi is an internal node, Xj and Xk are its two
child nodes. (b) The dynamic programming tables and the table entries for Xi, Xj and Xk . The
algorithm needs to query the tables for Xj and Xk to determine the values of V and N for each
entry in the table for Xi.

a and b edge-dominates g1, the selection bit for g1 in a queried entry from the table of
Xj or Xk can be either 0 or 1. On the other hand, if g1 is not edge-dominated by a and
b, the algorithm needs to consider three possible combinations (0, 1), (1, 0), and (1, 1)
for the selection bits of g1 while querying the entries in tables for Xj and Xk.

After the tables for all tree nodes have been completely determined, the algorithm
follows a top-down tracing back procedure to obtain the phylogenetic network with
the minimum number of recombinations. Specifically, the algorithm maintains a global
array to mark the vertices that are selected. All valid entries in the table for the root are
checked; the one with the minimum number of recombinations is selected. The vertices
with selection bit 1 in this entry are then marked in the global array. The consistent
entries in the tables of its child nodes are then queried. A single entry can be selected
from the table for each child node such that the sum of their N values is minimized. The
algorithm then proceeds to the child nodes and recursively applies the same procedure
on the selected entries for these nodes. In the last stage, the algorithm adds two directed
edges pointing to each recombinant vertex in the subgraph obtained from the tracing
back procedure. The recombinant edges in the corresponding triangle are then removed.

The time complexity of the algorithm on a genotype graph with ordered tree width t
is O(6t2km), where k is the number of heterozygous sites for each genotype and m is
the number of taxa. The correctness of the algorithm is guaranteed by the topological
property of an ordered tree decomposition, which does not change the topological order
of the vertices in a genotype graph. The algorithm thus only needs to query the tables
of the child nodes of a tree node to determine the validity and number of recombina-
tions for each entry in its table. The total number of possible combinations of selection
bits for vertices in a tree node is O(2t). For a genotype vertex v in a tree node Xi, in
the worst case, where v is contained in both of its two children Xj and Xk, the algo-
rithm may need to consider three possible combinations of consistent entries from tables
for Xj and Xk. The number of genotype vertices in a tree node is bounded by t, the

76 Y. Song et al.

computation time needed to compute the table for a tree node is thus bounded by
O(6t). Since the total number of vertices in a genotype graph is bounded by O(2km),
the time complexity of the algorithm is O(6t2km). We thus obtain the following
theorem.

Theorem 1. Given a genotype matrix with m rows and k heterozygous sites for each
row. Based on an ordered tree decomposition of its genotype graph with tree width
bounded by t, the phylogenetic network with the minimum number of recombinations
can be computed in time O(6t2km).

3 Experiments and Results

3.1 The Ordered Tree Widths for Genotype Data Sets

We have implemented this algorithm and tested its performance on 192 genotype data
sets downloaded from the SeattleSNPs database [3]. A graph trimming heuristic [4] is
used to safely remove some of the vertices and edges from the genotype graph. In partic-
ular, this heuristic arbitrarily selects a vertex with no incoming edges and computes the
set of all vertices that are reachable from this vertex. This vertex can be safely removed
from the genotype graph if this set cannot resolve all the genotypes. This procedure can
be recursively applied to a genotype graph and practically reduce its ordered tree width
to an appropriate number.

Most of the 192 data sets contain missing alleles. The algorithm thus needs to con-
sider all possible alleles on these sites while enumerating the haplotypes for a genotype
with missing data. However, a pair of haplotypes that resolve the genotype may have
the same allele on these missing sites. Genotypes with missing data can slightly in-
crease the ordered tree width. To avoid processing genotypes with a large number of
missing alleles and heterozygous sites, the algorithm partitions each data set into short
blocks, the solutions on all blocks are then combined with a dynamic programming ap-
proach used in [6] to obtain an overall solution. In particular, this algorithm considers
the consistency of haplotyping results for contiguous blocks and a dynamic program-
ming algorithm can be used to find an overal haplotyping results that have minimum
conflicts with those of the blocks. Table 1 shows the distribution of tree widths on all
the short blocks where each genotype contains up to 5 heterozygous sites and missing
alleles. It can be seen from the table that the tree widths for most of the genotype graphs
constructed on short blocks are in the range from 5 to 10.

Table 1. The distribution of tree widths of the genotype graphs for all the short blocks of genotype
data where each genotype contains up to 5 heterozygous sites and missing alleles in the block,
these blocks are obtained from the 192 available data sets

Tree Width 5 6 7 8 9 10 11 < 11

Percentage (%) 33.30 36.21 16.24 5.71 3.36 3.78 1.40 98.6

Phylogenetic Network Inferences Through Efficient Haplotyping 77

3.2 The Accuracy and Efficiency of Haplotyping

We used the program to compute the phylogentic network for each genotype data set
and the haplotypes that resolve it. We compared the accuracy of the program with that
of PHASE and HAPLOTYPER. We used error rates to evaluate the accuracy of the
phasing results. In particular, error rate is defined as the total percentage of alleles that
are incorrectly interpreted in the haplotyping results. We compare the performance of
our program with that of HAPLOTYPER and PHASE. These two software are the only
tools that are both available and can be smoothly compiled on our system. Table 2 shows
the error rates of the three programs on 192 genotype data sets. It is evident from the
table that our program achieves a lower error rate than that of PHASE and HAPLO-
TYPER on these testing data sets. In addition, our program is significantly faster than
both of them. PHASE in general needs a few hours to compute the haplotypes for a data
set, while HAPLOTYPER needs more than 10 seconds for a single run on 95% of the
testing data sets. Table 3 shows the distribution of the computation time of our program
on the testing data sets. The computation time needed by our program on 99.0% data
sets is less than 1.0 second.

Table 2. The error rates and their standard deviations on the 192 genotype data sets for PHASE,
HAPLOTYPER and our program

Error Rate (%) Standard Deviation (%)
PHASE 9.3% 0.8%

HAPLOTYPER 7.4% 0.6%

Our Program 5.7% 1.7%

Table 3. The cumulative distribution of the computation time needed by our program on the
testing data sets

< 0.01(sec) < 0.05(sec) < 0.1(sec) < 0.5(sec) < 1.0(sec)
Percentage 53.6% 68.8% 71.4% 93.8% 99.0%

3.3 The Number of Recombinations

The program can also obtain the minimum number of recombinations (single cross-
over) needed to construct a phylogenetic netork for each data set.

Table 4 shows the distribution of this number for all testing data sets. It is evident
from the table that the perfect phylogeny model can only explain 32.3% (R = 0) of
testing data sets and there are around 19.3% data sets whose phylogenetic networks

Table 4. The distribution of the minimum number of recombinations (single cross-over) for the
phylogenetic networks for the available data sets; R is the number of recombinations

R = 0 R = 1 1 < R ≤ 5 5 < R ≤ 10 10 < R ≤ 15 15 < R ≤ 20 R > 20

Percentage 32.3% 11.5% 12.0% 11.5% 12.5% 1.0% 19.3%

78 Y. Song et al.

contain more than 20 recombination events. This distribution also suggests that recom-
bination events are important for correctly interpreting most of the genotype data sets
in practice.

4 Conclusions

We have developped a new parameterized algorithm that can solve the genotype phas-
ing problem and, at the same time, computes the corresponding phylogenetic network
with the minimum number of single crossover recombinations. Our method reduces
the problem of phylogenetic network construction to finding a certain subgraph pat-
tern contained in a graph that represents the genotype matrices. Based on ordered graph
tree decomposition, this problem can be solved with a parameterized algorithm. Experi-
ments on biological data sets have demonstrated the advantage of this method over some
other methods in accuracy and efficiency. Moreover, we believe it is possible to apply
similar methods to solve a few other problems related to haplotyping such as the galled
tree inference [29], and a few incomplete perfect phylogeny problems [2,14,18,27].

Acknowledgement

We thank the constructive comments from the anonymous reviewers on an earlier ver-
sion of the paper.

References

1. S. Arnborg and A. Proskurowski, “Linear time algorithms for NP-hard problems restricted
to partial k-trees,” Discrete Applied Mathematics, 23:11–24, 1989.

2. R. Cilibrasi, L. Iersel, S. Kelk, and J. Tromp, “On the complexity of several haplotyping
problems”, Proc. 5th Workshop on Algorithms in Bioinformatics WABI’05, 128–139, 2005.

3. D.C. Crawford, C.S. Carlson, M.J. Rieder, D.P. Carrington, Q. Yi, J.D. Smith, M. A. Eberle,
L. Kruglyak, and D.A. Nickerson, “Haplotype diversity across 100 candidate genes for in-
flammation, lipid metabolism, and blood pressure regulation in two populations,” American
J. of Human Genetics, 74:610–622, 2004.

4. A.G. Clark, “Inference of haplotypes from PCR-amplified samples of diploid populations,”
Molecular Biology and Evolution, 7(2):111–122, 1990.

5. Z. Ding, V. Filkov, and D. Gusfield, “A Linear-Time Algorithm for the Perfect Phylogeny
Haplotyping (PPH) Problem,” Proc. 10th Int’l Conf. on Research in Comput. Molecular Biol.
RECOMB’06,, 231–245, 2006.

6. E. Eskin, E. Halperin, and R.M. Karp, “Large scale reconstruction of haplotypes from geno-
type data,” Proc. 7th Int’l Conf. on Research in Comput. Molecular Biol. RECOMB’03, 104–
113, 2003.

7. G. Greenspan and D. Greiger, “Model-based inference of haplotype block variation,” J. of
Computational Biology, 11:493–504, 2004.

8. D. Gusfield, “Haplotyping as perfect phylogeny: conceptual framework and efficient solu-
tions,” Proc. 6th Int’l Conf. on Research in Comput. Molecular Biol. RECOMB’02, 166–175,
2002.

Phylogenetic Network Inferences Through Efficient Haplotyping 79

9. D. Gusfield and V. Bansal, “A fundamental decomposition theory for phylogenetic networks
and incompatible characters.,” Proc. 9th Int’l Conf. on Research in Comput. Molecular Biol.
RECOMB’05, 217–232, 2005.

10. D. Gusfield, “Haplotyping by pure pasimony,” Proc. 14th Symp. on Combinatorial Pattern
Matching CPM’03, 144–155, 2003.

11. D. Gusfield, “A practical algorithm for optimal inference of haplotypes from diploid popu-
lations,” Proc. 8th Conf. on Intelligent Systems for Molecular Biology ISMB’00, 183–189,
2000.

12. D. Gusfield, S. Eddhu, and C. Langley, “Optimal efficient reconstruction of phylogenetic
networks with constrained recombination,” J. of Bioinformatics and Computational Biology,
2(1):173–213, 2004.

13. D. Gusfield, “An overview of combinatorial methods for haplotype inference,” in Computa-
tional Methods for SNPs and Haplotype Inference, LNCS 2983, 9–25, 2004.

14. D. Gusfield, “Inference of haplotypes from samples of diploid populations: complexity and
algorithms,” J. of Computational Biology, 8(3):305–324, 2001.

15. E. Halperin and R.M. Karp, “Perfect phylogeny and haplotype assignment,” Proc. 8th Int’l
Conf. on Research in Comput. Molecular Biol. RECOMB’04, 10–19, 2004.

16. J. Hein, “Reconstructing evolution of squences subject to recombination using parsimony,”
Mathematical Biosciences, 98:185–200, 1990.

17. G. Kimmel and R. Shamir, “Maximum likelihood resolution of multi-block genotypes,” Proc.
8th Int’l Conf. on Research in Comput. Molecular Biol. RECOMB’04, 2–9, 2004.

18. G. Kimmel and R. Shamir, “The incomplete perfect phylogeny haplotype problem,” J. of
Bioinformatics and Computational Biology, 3(2):359–384, 2005.

19. B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, and
R. Timme, “Phylogenetic networks: Modeling, reconstructibility, and accuracy,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 1:13–23, 2004.

20. S.R. Myers and R.C. Griffiths, “Bounds on the minimum number of recombination events in
a sample history,” Genetics, 163:375–394, 2003.

21. T. Niu, Z. S. Qin, X. Xu, and J.S. Liu, “Bayesian haplotype inference for multiple linked
single-nucleotide polymorphisms,” American J. of Human Genetics, 70(1):157–169, 2002.

22. D. Posada and K. Crandall, “Intraspecific gene genealogies: trees grafting into networks,”
Trends in Ecology and Evolution, 16:37–45, 2001.

23. P. Rastas, M. Koivisto, H. Mannila, and E. Ukkonen, “A hidden Markov technique for hap-
lotype reconstruction,” Proc. 5th Workshop on Algorithms in Bioinformatics WABI’05, 140–
151, 2005.

24. N. Robertson and P.D. Seymour, “Graph Minors II. Algorithmic aspects of tree-width,” J. of
Algorithms, 7:309–322, 1986.

25. R. Sharan, B.V. Halldórsson, and S. Istrail, “Islands of tractability for parsimony haplotyp-
ing,” Proc. IEEE Computational Systems Bioinformatics Conf. CSB’05, 65–72, 2005.

26. Y.S. Song and J. Hein, “On the minimum number of recombination events in the evolutionary
history of DNA sequences,” J. of Mathematical Biology, 48:160–186, 2004.

27. Y.S. Song, Y. Wu, and D. Gusfield, “Algorithms for imperfect phylogeny haplotyping (IPPH)
with a single homoplasy or recombination event,” Proc. 5th Workshop on Algorithms in
Bioinformatics WABI’05, 152–164, 2005.

28. M. Stephens, N.J. Smith, and P. Donnelly, “A new statistical method for haplotype recon-
struction from population data,” American J. of Human Genetics, 68:978–989, 2001.

29. L. Wang, K. Zhang and L. Zhang, “Perfect phylogenetic networks with recombination,” J. of
Computational Biology 8(1):69–78, 2001.

Beaches of Islands of Tractability: Algorithms

for Parsimony and Minimum Perfect Phylogeny
Haplotyping Problems�

Leo van Iersel1, Judith Keijsper1, Steven Kelk2, and Leen Stougie1,2

1 Technische Universiteit Eindhoven (TU/e), Den Dolech 2,
5612 AX Eindhoven, Netherlands

l.j.j.v.iersel@tue.nl, j.c.m.keijsper@tue.nl
http://www.tue.nl

2 Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ
Amsterdam, Netherlands

steven.kelk@cwi.nl, leen.stougie@cwi.nl
http://www.cwi.nl

Abstract. The problem Parsimony Haplotyping (PH) asks for the
smallest set of haplotypes which can explain a given set of genotypes, and
the problem Minimum Perfect Phylogeny Haplotyping (MPPH) asks for
the smallest such set which also allows the haplotypes to be embedded in a
perfect phylogeny evolutionary tree, a well-known biologically-motivated
data structure. For PH we extend recent work of [17] by further mapping
the interface between “easy” and “hard” instances, within the framework
of (k, l)-bounded instances. By exploring, in the same way, the tractability
frontier of MPPH we provide the first concrete, positive results for this
problem, and the algorithms underpinning these results offer new insights
about how MPPH might be further tackled in the future. In both PH
and MPPH intriguing open problems remain.

1 Introduction

The computational problem of inferring biologically meaningful haplotype data
from the genotype data of a population continues to generate considerable in-
terest at the interface of biology and computer science/mathematics. A popular
underlying abstraction for this model (in the context of diploid organisms) repre-
sents a genotype as a string over a {0, 1, 2} alphabet, and a haplotype as a string
over {0, 1}. The precise goal depends on the biological model being applied but
a common, minimal algorithmic requirement is that, given a set of genotypes, a
set of haplotypes must be produced which resolves the genotypes.

In this paper we focus on two different models. The first model, the parsimony
haplotyping (PH) model [10], asks for a smallest (i.e., most parsimonious) set of
haplotypes to resolve the input genotypes. To be precise, we are given a genotype
matrix G with elements in {0, 1, 2}, the rows of which correspond to genotypes,

� Supported by the Dutch BSIK/BRICKS project.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 80–91, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Beaches of Islands of Tractability 81

while its columns correspond to sites on the genome, called SNP’s. A haplotype
matrix has elements from {0, 1}, and rows corresponding to haplotypes. Haplo-
type matrix H resolves genotype matrix G if for each row gi of G, containing
at least one 2, there are two rows hi1 and hi2 of H , such that gi(j) = hi1(j) for
all j with hi1(j) = hi2(j) and gi(j) = 2 otherwise, in which case we say that hi1

and hi2 resolve gi, we write gi = hi1 + hi2 , and we call hi1 the complement of
hi2 with respect to gi, and vice versa. A row gi without 2’s is itself a haplotype
and is uniquely resolved by this haplotype, which therefore has to be contained
in H .

The Parsimony Haplotyping problem (PH) is given a genotype matrix G to
find a haplotype matrix H with a minimum number of rows that resolves G.
There is a rich literature in this area, of which recent papers such as [5] give a
good overview. The problem is APX-hard [13,17] and the best known approxi-
mation algorithms are rather weak, yielding approximation guarantees of 2k−1

where k is the maximum number of 2’s appearing in a row of the genotype
matrix [13,14]. The lack of success in finding strong approximation guarantees
has led many authors to consider methods based on Integer Linear Programming
(ILP) [5,10,11,13]. A different response to the hardness is to search for “islands of
tractability” amongst special, restricted cases of the problem, exploring the fron-
tier between hardness and polynomial-time solvability. In the literature available
in this direction [6,14,17], this investigation has specified classes of (k, l)-bounded
instances : in a (k, l)-bounded instance the input genotype matrix G has at most
k 2’s per row and at most l 2’s per column (cf. [17]). If k or l is a “∗” we mean
instances that are bounded only by the number of 2’s per column or per row,
respectively. This paper aims to supplement this “tractability” literature with
mainly positive results, and doing so almost completes the bounded instance
complexity landscape.

Next to the PH model we study a related model: the Minimum Perfect Phy-
logeny Haplotyping (MPPH) model [2]. Again a minimum-size set of resolving
haplotypes is required but this time under the additional, biologically-motivated
restriction that the produced haplotypes permit a perfect phylogeny i.e., that
they can be placed at the leaves of an evolutionary tree within which each site
mutates at most once. Haplotype matrices admitting a perfect phylogeny are
completely characterised [8,9] by the absence of the forbidden submatrix

F =

⎡⎢⎢⎣
1 1
0 0
1 0
0 1

⎤⎥⎥⎦ .

The Minimum Perfect Phylogeny Haplotyping problem (MPPH) is given a geno-
type matrix G find a haplotype matrix H with a minimum number of rows that
resolves G and admits a perfect phylogeny.

The feasibility question (PPH)—given a genotype matrix G, find any haplo-
type matrix H that resolves G and admits a perfect phylogeny, or state that no
such H exists—is solvable in linear-time [7,19]. Researchers in this area are now
moving on to explore the PPH question on phylogenetic networks [18].

82 L. van Iersel et al.

The MPPH problem, however, has so far hardly been studied beyond an
NP-hardness result [2] and occasional comments within PH and PPH literature
[4][19][20]. In this paper we thus provide what is one of the first attempts to
analyse the parsimony optimisation criteria within a well-defined and widely
applicable biological framework. We seek namely to map the MPPH complexity
landscape in the same way as the PH complexity landscape: using the concept
of(k, l)-boundedness. We write PH(k, l) and MPPH(k, l) for these problems
restricted to (k, l)-bounded instances.

In [13] it was shown that PH(3, ∗) is APX-hard. In [6][14] it was shown that
PH(2, ∗) is polynomial-time solvable. Recently in [17], it was shown (amongst
various other results) that PH(4, 3) is APX-hard. In this paper, we bring the
boundaries between hard and easy classes closer by showing that PH(3, 3) is
APX-hard and that PH(∗, 1) is polynomial-time solvable.

As far as MPPH is concerned there have been, prior to this paper, no con-
crete results beyond the above mentioned NP-hardness result. We show that
MPPH(3, 3) is APX-hard and that, like their PH counterparts, MPPH(2, ∗)
and MPPH(∗, 1) are polynomial-time solvable (in both cases using a reduction
to the PH counterpart.)

For both problems the (∗, 2)-bounded versions remain the intriguing open
case. Analogous to a result from [17] for a subclass of PH(∗, 2), we show here
that MPPH(∗, 2) is solvable in polynomial-time if the compatibility graph of the
input genotype matrix is a clique. The compatibility graph C(G) of a genotype
matrix G has vertices representing the rows (genotypes) of G, and there is an edge
between two vertices if the corresponding two genotypes coincide in each column
in which none of the two has a 2. Our prediction is that learning the complexity
of PH(∗, 2) and MPPH(∗, 2) in the case where the compatibility graph is a
(graph-theoretical) sum of two or three cliques, will reveal the complexity of the
full classes PH(∗, 2) and MPPH(∗, 2).

As explained by Sharan et al. in their “islands of tractability” paper [17],
identifying tractable special classes can be practically useful for constructing
high-speed subroutines within ILP solvers, but perhaps the most significant as-
pect of this paper is the analysis underpinning the results, which - by deepening
our understanding of how this problem behaves - assists the search for better,
faster approximation algorithms and for determining the exact beaches of the
islands of tractability. Indeed, the continuing absence of approximation algo-
rithms with strong accuracy guarantees underlines the importance of such work.
Furthermore, the fact that (prior to this paper) concrete and positive results for
MPPH had not been obtained (except for rather pessimistic modifications to
ILP models [5]), means that the algorithms given here for the MPPH cases,
and the data structures used in their analysis (e.g. the restricted compatibility
graph in Section 3), assume particular importance.

Finally, this paper yields some interesting open problems, of which the out-
standing (∗, 2) case (for both PH and MPPH) is only one; prominent amongst
these questions (which are discussed at the end of the paper) is the question

Beaches of Islands of Tractability 83

of whether MPPH and PH instances are inter-reducible, at least within the
bounded-instance framework.

The paper is organised as follows. In Section 2 we give the hardness results,
in Section 3 we present the polynomial-time solvable cases, and we finish in Sec-
tion 4 with conclusions and open problems. A full version of the paper including
all proofs is available online [12].

2 Hard Problems

Theorem 1. MPPH(3, 3) is APX-hard.

Proof. The proof in [2] that MPPH is NP-hard uses a reduction from Vertex
Cover. Using the same construction, but reducing instead from the APX-hard
problem 3-Vertex Cover (i.e., where every vertex has at most degree 3) [1][15],
gives a (3,3)-bounded instance. In such a case it is not too difficult to show that
(for ε > 0) a (1 + ε) approximation for the constructed MPPH instance can be
used to create a (1+8ε) approximation for the size of the minimum vertex cover
on the input graph. We defer the details to a full version of the paper [12]. �

Theorem 2. PH(3, 3) is APX-hard.

Proof. We observe that in the proof that PH(4, 3) is APX-hard, by Sharan et
al in [17], the leftmost 2 of an element genotype is actually only necessary if the
element in question appears in fewer than three triples. This slight modification
thus yields a (3,3)-bounded instance, and the reduction used in [17] is otherwise
unchanged. We defer the proof of correctness to a full version of the paper [12].�

3 Polynomial-Time Solvability

3.1 Parsimony Haplotyping

The following result shows the polynomial-time solvability of PH on (*,1)-
bounded instances.

We say that two genotypes g1 and g2 are compatible, denoted as g1 ∼ g2, if
g1(j) = g2(j) or g1(j) = 2 or g2(j) = 2 for all j. A genotype g and a haplotype h
are consistent if h can be used to resolve g, ie. if g(j) = h(j) or g(j) = 2 for all
j. The compatibility graph is the graph with vertices for the genotypes and an
edge between two genotypes if they are compatible. Proof of the following two
lemmas is omitted.

Lemma 1. If g1 and g2 are rows of a genotype matrix with at most one 2 per
column and g1 and g2 are compatible then there exists exactly one haplotype that
is consistent with both g1 and g2. �

We use the notation g1 ∼h g2 if g1 and g2 are compatible and h is consistent with
both. We prove that the compatibility graph has a specific structure. A 1-sum
of two graphs is the result of identifying a vertex of one graph with a vertex of

84 L. van Iersel et al.

the other graph. A 1-sum of n + 1 graphs is the result of identifying a vertex of
a graph with a vertex of a 1-sum of n graphs. See Figure 1 for an example of a
1-sum of three cliques (K3, K4 and K2).

Lemma 2. If G is a genotype matrix with at most one 2 per column then every
connected component of the compatibility graph of G is a 1-sum of cliques, where
edges in the same clique are labelled with the same haplotype. �

g1

g2

g3

g4

g5

g6

g7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 2 0 1
2 0 2 0 0 0 1
0 0 1 2 0 0 1
0 0 1 0 0 0 2
0 0 1 1 0 2 1
1 2 0 0 0 0 1
0 0 1 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 1. Example of a genotype matrix and the corresponding compatibility graph, with
h1 = (0, 0, 1, 1, 0, 0, 1), h2 = (0, 0, 1, 0, 0, 0, 1) and h3 = (1, 0, 0, 0, 0, 0, 1)

From this lemma, it follows directly that in PH(∗, 1) the compatibility graph is
chordal, meaning that all its induced cycles are triangles. Every chordal graph
has a simplicial vertex, a vertex whose (closed) neighbourhood is a clique. Delet-
ing a vertex in a chordal graph gives again a chordal graph (see for example [3]
for an introduction to chordal graphs). The following lemma leads almost im-
mediately to polynomial solvability of PH(∗, 1). We use set-operations for the
rows of matrices: thus, e.g., h ∈ H says h is a row of matrix H , H ∪ h says h
is added to H as a row, and H ′ ⊂ H says H ′ is a submatrix consisting of rows
of H .

Lemma 3. Given haplotype matrix H ′ and genotype matrix G with at most one
2 per column it is possible to find, in polynomial time, a haplotype matrix H that
resolves G, has H ′ as a submatrix and has a minimum number of rows.

Proof. The proof is constructive. Let problem (G, H ′) denote the above problem
on input matrices G and H ′. Let C be the compatibility graph of G, which im-
plied by Lemma 2 is chordal. Suppose g corresponds to a simplicial vertex of C.
Let hc be the unique haplotype consistent with any genotype in the closed neigh-
bourhood clique of g. We extend matrix H ′ to H ′′ and update graph C as follows.

1. If g has no 2’s it can be resolved with only one haplotype h = g. We set
H ′′ = H ′ ∪ h and remove g from C.

2. Else, if there exist rows h1 ∈ H ′ and h2 ∈ H ′ that resolve g we set H ′′ = H ′

and remove g from C.
3. Else, if there exists h1 ∈ H ′ such that g = h1 + hc we set H ′′ = H ′ ∪ hc and

remove g from C.
4. Else, if there exists h1 ∈ H ′ and h2 /∈ H ′ such that g = h1 + h2 we set

H ′′ = H ′ ∪ h2 and remove g from C.

Beaches of Islands of Tractability 85

5. Else, if g is not an isolated vertex in C then there exists a haplotype h1 such
that g = h1 + hc and we set H ′′ = H ′ ∪ {h1, hc} and remove g from C.

6. Otherwise, g is an isolated vertex in C and we set H ′′ = H ′ ∪ {h1, h2} for
any h1 and h2 such that g = h1 + h2 and remove g from C.

The resulting graph is again chordal and we repeat the above procedure for
H ′ = H ′′ until all vertices are removed from C. Let H be the final haplotype
matrix H ′′. It is clear from the construction that H resolves G.

The proof that H has a minimum number of rows is by induction on the
number of genotypes and deferred to a full version of the paper [12]. �

Theorem 3. The problem PH(∗, 1) can be solved in polynomial time.

Proof. The proof follows from Lemma 3. Construction of the compatibility graph
takes O(n2m) time, for an n times m input matrix. Finding an ordering in which
to delete the simplicial vertices can be done in time O(n2) (see [16]) and resolving
each vertex takes O(n2m) time. The overall running time of the algorithm is
therefore O(n3m). �

3.2 Minimum Pure Parsimony Haplotyping

Polynomial-time solvability of PH on (2, ∗)-bounded instances has been shown
in [6] and [14]. We prove it for MPPH(2, ∗). We start with a definition.

Definition 1. For two columns of a genotype matrix we say that a reduced res-
olution of these columns is the result of applying the following rules as often as
possible to the submatrix induced by these columns: deleting one of two identical
rows and the replacement rules, for a ∈ {0, 1},

[
2 a
]
→
[
1 a
0 a

]
,
[
a 2
]
→
[
a 1
a 0

]
,
[
2 2
]
→
[
1 1
0 0

]
and

[
2 2
]
→
[
1 0
0 1

]
Note that two columns can have more than one reduced resolution if there
is a genotype with a 2 in both these columns. The reduced resolutions of a
column pair of a genotype matrix G are submatrices of (or equal to) F and
represent all possibilities for the submatrix induced by the corresponding two
columns of a minimal haplotype matrix H resolving G, after collapsing identical
rows.

Theorem 4. The problem MPPH(2, ∗) can be solved in polynomial time.

Proof. We reduce MPPH(2, ∗) to PH(2,*), which can be solved in polynomial
time (see above). Let G be an instance of MPPH(2, ∗). We may assume that
any two rows are different.

Take the submatrix of any two columns of G. If it does not contain a [2 2] row,
then in terms of Definition 1 there is only one reduced resolution. If G contains
two or more [2 2] rows then, since by assumption all genotypes are different,

G must have
[
2 2 0
2 2 1

]
and therefore

[
2 0
2 1

]
as a submatrix, which can only be

86 L. van Iersel et al.

resolved by a haplotype matrix containing the forbidden submatrix F . It follows
that in this case the instance is infeasible. If it contains exactly one [2 2] row,
then there are clearly two reduced resolutions. Thus we may assume that for
each column pair there are at most two reduced solutions.

Observe that if for some column pair all reduced resolutions are equal to
F the instance is again infeasible. On the other hand, if for all column pairs
none of the reduced resolutions is equal to F then MPPH(2, ∗) is equiva-
lent to PH(2, ∗) because any minimal haplotype matrix H that resolves G
admits a perfect phylogeny. Finally, consider a column pair with two reduced
resolutions, one of them containing F . Because there are two reduced resolu-
tions there is a genotype g with a 2 in both columns. For any such g, replace
g in G by h1 and h2, where h1 and h2 are the haplotypes that correspond
to the resolution of g that does not lead to F . This ensures that a minimal
haplotype matrix H resolving G can not have F as a submatrix in these two
columns.

Repeating this procedure for every column pair either tells us that the matrix
G was an infeasible instance or creates a genotype matrix G′ such that any min-
imal haplotype matrix H resolves G′ if and only if H resolves G, and H admits
a perfect phylogeny. �

Theorem 5. The problem MPPH(∗, 1) can be solved in polynomial time.

Proof. As in the proof of Theorem 4 we reduce MPPH(∗, 1) to PH(∗, 1). We
defer it to a full version of the paper. �

The open complexity problems in PH and MPPH are now PH(∗, 2) and
MPPH(∗, 2). Unfortunately, we have not found the answer to these complex-
ity questions. However, the borders have been pushed slightly further. In [17]
PH(∗, 2) is shown to be polynomially solvable if the input genotypes have the
complete graph as compatibility graph, we call this problem PH(∗, 2)-C1. We
will give the counterpart result for MPPH(∗, 2)-C1.

Let G be an n×m MPPH(∗, 2)-C1 input matrix. Since the compatibility graph
is a clique, every column of G contains only one symbol besides possible 2’s. If we
replace in every 1-column of G (a column containing only 1’s and 2’s) the 1’s by
0’s and mark the SNP corresponding to this column ‘flipped’, then we obtain an
equivalent problem on a {0, 2}-matrixG′. To see that this problem is indeed equiv-
alent, suppose H ′ is a haplotype matrix resolving this modified genotype matrix
G′ and suppose H ′ does not contain the forbidden submatrix F . Then by inter-
changing 0’s and 1’s in every column of H ′ corresponding to a flipped SNP, one
obtains a haplotype matrix H without the forbidden submatrix which resolves
the original input matrix G. And vice versa. Hence, from now on we will assume,
without loss of generality, that the input matrix G is a {0, 2}-matrix.

If we assume moreover that n ≥ 3, which we do from here on, the trivial
haplotype ht defined as the all-0 haplotype of length m is the only haplotype
consistent with all genotypes in G. We define the restricted compatibility graph
CR(G) of G as follows. As in the normal compatibility graph, the vertices of
CR(G) are the genotypes of G. However, there is an edge {g, g′} in CR(G) only

Beaches of Islands of Tractability 87

if g ∼h g′ for some h �= ht, or, equivalently, if there is a column where both g
and g′ have a 2.

Lemma 4. If G is a feasible instance of MPPH(∗, 2)-C1 then every vertex in
CR(G) has degree at most 2.

Proof. Any vertex of degree higher than 2 in CR(G) implies the existence in G
of submatrix:

B =

⎡⎢⎢⎣
2 2 2
2 0 0
0 2 0
0 0 2

⎤⎥⎥⎦
It is easy to verify that no resolution of this submatrix permits a perfect

phylogeny. �
Suppose that G has two identical columns. There are either 0, 1 or 2 rows with
2’s in both these columns. In each case it is easy to see that any haplotype matrix
H resolving G can be modified, without introducing a forbidden submatrix, to
make the corresponding columns in H equal as well (simply delete one column
and duplicate another). This leads to the first step of the algorithm A that we
propose for solving MPPH(∗, 2)-C1:

Step 1 of A: Collapse all identical columns in G.
From now on, we assume that there are no identical columns. Let us partition

the genotypes in G0, G1 and G2, denoting the set of genotypes in G with,
respectively, degree 0,1, and 2 in CR(G). For any genotype g of degree 1 in
CR(G) there is exactly one genotype with a 2 in the same column as g. Because
there are no identical columns, it follows that any genotype g of degree 1 in
CR(G) can have at most two 2’s. Similarly any genotype of degree 2 in CR(G)
has at most three 2’s. Accordingly we define G1

1 and G2
1 as the genotypes in

G1 that have one 2 and two 2’s, respectively, and similarly G2
2 and G3

2 as the
genotypes in G2 with two and three 2’s, respectively.

The following lemma states how genotypes in these sets must be resolved if
no submatrix F is allowed in the solution. If genotype g has k 2’s we denote by
g[a1, a2, . . . , ak] the haplotype with entry ai in the position where g has its i-th
2 and 0 everywhere else.

Lemma 5. In a feasible solution to the problem MPPH(∗, 2)-C1 all genotypes
are resolved in one of the following ways:

1. a genotype g ∈ G1
1 is resolved by g[1] and g[0] = ht;

2. a genotype g ∈ G2
2 is resolved by g[0, 1] and g[1, 0];

3. a genotype g ∈ G2
1 is either resolved by g[0, 0] = ht and g[1, 1] or by g[0, 1]

and g[1, 0]; or
4. a genotype g ∈ G3

2 is either resolved by g[1, 0, 0] and g[0, 1, 1] or by g[0, 1, 0]
and g[1, 0, 1] (assuming that the two neighbours of g have a 2 in the first two
positions where g has a 2).

88 L. van Iersel et al.

Proof. A genotype g ∈ G2
2 has degree 2 in CR(G), which implies the existence

in G of a submatrix:

D =
g
g′

g′′

⎡⎣2 2
2 0
0 2

⎤⎦ .

Resolving g with g[0, 0] and g[1, 1] clearly leads to the forbidden submatrix
F . Similarly, resolving a genotype g ∈ G3

2 with g[0, 0, 1] and g[1, 1, 0] or with
g[0, 0, 0] and g[1, 1, 1] leads to a forbidden submatrix in the first two columns
where g has a 2. It follows that resolving the genotypes in a way other than
described in the lemma yields a haplotype matrix which does not admit a perfect
phylogeny.

Now suppose that all genotypes are resolved as described in the lemma and
assume that there is a forbidden submatrix F in the solution. Without loss of
generality, we assume F can be found in the first two columns of the solution
matrix. We may also assume that no haplotype can be deleted from the solution.
Then, since F contains [1 1], there is a genotype g starting with [2 2]. Since there
are no identical columns there are only two possibilities. The first possibility is
that there is exactly one other genotype g′ with a 2 in exactly one of the first
two columns. Since all genotypes different from g and g′ start with [0 0], none of
the resolutions of g can have created the complete submatrix F . Contradiction.
The other possibility is that there is exactly one genotype with a 2 in the first
column and exactly one genotype with a 2 in the second column, but these are
different genotypes, i.e., we have the submatrix D. Then g ∈ G3

2 or g ∈ G2
2 and

it can again be checked that none of the resolutions in (2) and (4) leads to the
forbidden submatrix. �

Lemma 6. Let G be an instance of MPPH(∗, 2) and G2
1, G3

2 as defined above.

1. any nontrivial haplotype is consistent with at most two genotypes in G; and
2. A genotype g ∈ G2

1 ∪G3
2 must be resolved using at least one haplotype that is

not consistent with any other genotype.

Proof. For the first statement, let h be a nontrivial haplotype. There is a column
where h has a 1 and there are at most two genotypes with a 2 in that column.
For the second statement, a genotype g ∈ G2

1 ∪ G3
2 has a 2 in a column that

has no other 2’s. Hence there is a haplotype with a 1 in this column and this
haplotype is not consistent with any other genotypes. �

A haplotype that is only consistent with g is called a private haplotype of g.
Based on (1) and (2) of Lemma 5 we propose the next step of A:

Step 2 of A: Resolve all g ∈ G1
1 ∪ G2

2 by the unique haplotypes allowed to
resolve them according to Lemma 5. Also resolve each g ∈ G0 with ht and the
complement of ht with respect to g. This leads to a partial haplotype matrix Hp

2 .

The next step of A is based on Lemma 6 (2).

Beaches of Islands of Tractability 89

Step 3 of A: For each g ∈ G2
1 ∪ G3

2 with g ∼h′ g′ for some h′ ∈ Hp
2 that is

allowed to resolve g according to Lemma 5, resolve g by adding the complement
h′′ of h′ w.r.t. g to the set of haplotypes, i.e., set Hp

2 := Hp
2 ∪ {h′′}, and repeat

this step as long as new haplotypes get added. This leads to partial haplotype
matrix Hp

3 .
Notice that Hp

3 does not contain any haplotype that is allowed to resolve any
of the genotypes that have not been resolved in Steps 2 and 3. Let us denote
this set of leftover, unresolved haplotypes by GL, the degree 1 vertices among
those by GL1 ⊆ G2

1, and the degree 2 vertices among those by GL2 ⊆ G3
2.

The restricted compatibility graph induced by GL, which we denote by CR(GL)
consists of paths and circuits. We first give the final steps of algorithm A and
argue optimality afterwards.

Step 4 of A: Resolve each cycle in CR(GL), necessarily consisting of GL2-
vertices, by starting with an arbitrary vertex and, following the cycle, resolving
each next pair g, g′ of vertices by haplotype h �= ht such that g ∼h g′ and the
two complements of h w.r.t. g and g′ respectively. In case of an odd cycle the
last vertex is resolved by any pair of haplotypes that is allowed to resolve it.
Note that h has a 1 in the column where both g and g′ have a 2 and otherwise
0. It follows easily that g and g′ are both allowed to use h (and its complement)
according to (4) of Lemma 5.

Step 5 of A: Resolve each path in CR(GL) with both endpoints in GL1 by first
resolving the GL1 endpoints by the trivial haplotype ht and the complements of
ht w.r.t. the two endpoint genotypes, respectively. The remaining path contains
only GL2-vertices and is resolved according to Step 6.

Step 6 of A: Resolve each remaining path by starting in (one of) its GL2-
endpoint(s), and following the path, resolving each next pair of vertices as in
Step 4. In case of a path with an odd number of vertices, resolve the last vertex
by any pair of haplotypes that is allowed to resolve it in case it is a GL2-vertex,
and resolve it by the trivial haplotype and its complement w.r.t. the vertex in
case it is a GL1 vertex.

By construction the haplotype matrix H resulting from A resolves G. In
addition, from Lemma 5 follows that H admits a perfect phylogeny. To argue
minimality of the solution, first observe that the haplotypes added in Step 2 and
Step 3 are unavoidable by Lemma 5 (1) and (2) and Lemma 6 (2). Lemma 6
tells us moreover that the resolution of a cycle of k genotypes in GL2 requires
at least k + 	k

2
 haplotypes that can not be used to resolve any other genotypes
in GL. This proves optimality of Step 4. To prove optimality of the last two
steps we need to take into account that genotypes in GL1 can potentially share
the trivial haplotype. Observe that to resolve a path with k vertices one needs
at least k + 	k

2
 haplotypes. Indeed A does not use more than that in Steps 5
and 6. Moreover, since these paths are disjoint, they cannot share haplotypes
for resolving their genotypes except for the endpoints if they are in GL1, which
can share the trivial haplotype. Indeed, A exploits the possibility of sharing the
trivial haplotype in a maximal way, except on a path with an even number of

90 L. van Iersel et al.

vertices and one endpoint in GL1. Such a path, with k (even) vertices, is resolved
in A by 3k

2 haplotypes that can not be used to resolve any other genotypes.
The degree 1 endpoint might alternatively be resolved by the trivial haplotype
and its complement w.r.t. the corresponding genotype, adding the latter private
haplotype, but then for resolving the remaining path with k − 1 (odd) vertices
only from GL2 we still need k − 1 + 	k−1

2
, which together with the private
haplotype of the degree 1 vertex gives 3k

2 haplotypes also (not even counting ht).

Theorem 6. MPPH(∗, 2) is solvable in polynomial time if the compatibility
graph is a clique. �

4 Postlude

There remain a number of open problems. The complexity of PH(∗, 2) and
MPPH(∗, 2) is still unknown. An approach that might raise the necessary in-
sight is studying PH(∗, 2)-Ck and MPPH(∗, 2)-Ck variants of these problems
(i.e., where the compatibility graph is the sum of k cliques) for small k.

Another intriguing open question concerns the relative complexity of PH and
MPPH instances. Has PH(k, l) always the same complexity as MPPH(k, l),
in terms of well-known complexity measurements (polynomial-time solvability,
NP-hardness, APX-hardness)? For hard instances, do approximability ratios dif-
fer? There do not yet exist any approximation algorithms for MPPH and an
immediate question is whether the weak 2k−1 approximation ratio for PH can
be attained (or improved) for MPPH . A related question is whether it is pos-
sible to directly encode PH instances as MPPH instances, and/or vice-versa,
and if so whether/how this affects the bounds on the number of 2’s in columns
and rows.

For hard PH(k, l) instances it would also be interesting to determine if the
2k−1 approximation ratio can be improved for fixed l. Finally, with respect to
MPPH , it could be good to explore how parsimonious the solutions are that
are produced by the various PPH feasibility algorithms, and whether searching
through the entire space of PPH solutions (as proposed in [19]) yields practical
algorithms for solving MPPH .

References

1. Alimonti, P., Kann, V., Hardness of approximating problems on cubic graphs, Proc.
of the 3rd Italian Conf. on Algorithms and Complexity, 288–298 (1997)

2. Bafna, V., Gusfield, D., Hannenhalli, S., Yooseph, S., A Note on Efficient Com-
putation of Haplotypes via Perfect Phylogeny, J. of Computational Biology, 11(5),
pp. 858–866 (2004)

3. Blair, J.R.S., Peyton, B., An introduction to chordal graphs and clique trees, in
Graph theory and sparse matrix computation, pp. 1–29, Springer (1993)

4. Bonizzoni, P., Vedova, G.D., Dondi, R., Li, J., The haplotyping problem: an
overview of computational models and solutions, J. of Computer Science and Tech-
nology 18(6), pp. 675–688 (2003)

Beaches of Islands of Tractability 91

5. Brown, D., Harrower, I., Integer programming approaches to haplotype inference
by pure parsimony, IEEE/ACM Transactions on Computational Biology and In-
formatics 3(2) (2006)

6. Cilibrasi, R., Iersel, L.J.J. van, Kelk, S.M., Tromp, J., On the Complexity of Sev-
eral Haplotyping Problems, Proc. 5th Workshop on Algorithms in Bioinformatics
(WABI 2005), LNBI 3692, Springer Verlag, Berlin, pp. 128–139 (2005)

7. Ding, Z., Filkov, V., Gusfield, D., A linear-time algorithm for the perfect phylogeny
haplotyping (PPH) problem, J. of Computational Biology, 13(2) pp. 522–533 (2006)

8. Gusfield, D., Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology, Cambridge University Press (1997)

9. Gusfield, D., Efficient algorithms for inferring evolutionary history, Networks 21,
pp. 19–28 (1991)

10. Gusfield, D., Haplotype inference by pure parsimony, Proc. 14th Symp. Combina-
torial Pattern Matching CPM’03, pp. 144–155 (2003)

11. Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail,
S., A survey of computational methods for determining haplotypes, Proc. DI-
MACS/RECOMB Satellite Workshop: Computational Methods for SNPs and Hap-
lotype Inference, pp. 26–47 (2004)

12. Iersel, L.J.J. van, Keijsper, J.C.M., Kelk, S.M., Stougie, L., Beaches of islands of
tractability: Algorithms for parsimony and minimum perfect phylogeny haplotyp-
ing problems, technical report, http://www.win.tue.nl/bs/spor/2006-09.pdf (2006)

13. Lancia, G., Pinotti, M., Rizzi, R., Haplotyping populations by pure parsimony:
complexity of exact and approximation algorithms, INFORMS J. on Computing
16(4) pp. 348–359 (2004)

14. Lancia, G., Rizzi, R., A polynomial case of the parsimony haplotyping problem,
Operations Research Letters 34(3) pp. 289–295 (2006)

15. Papadimitriou, C.H., Yannakakis, M., Optimization, approximation, and complex-
ity classes, J. Comput. System Sci. 43, pp. 425–440 (1991)

16. Rose, D.J., Tarjan, R.E., Lueker, G.S., Algorithmic aspects of vertex elimination
on graphs, SIAM J. Comput. 5, pp. 266–283 (1976)

17. Sharan, R., Halldórsson, B.V., Istrail, S., Islands of tractability for parsimony hap-
lotyping, IEEE/ACM Transactions on Computational Biology and Bioinformatics,
to appear

18. Song, Y.S., Wu, Y., Gusfield, D., Algorithms for imperfect phylogeny haplotyping
(IPPH) with single haploplasy or recombination event, Proc. 5th Workshop on
Algorithms in Bioinformatics (WABI 2005), LNBI 3692, Springer Verlag, Berlin,
pp. 152–164 (2005)

19. VijayaSatya, R., Mukherjee, A., An optimal algorithm for perfect phylogeny hap-
lotyping, J. of Computational Biology, to appear

20. Xian-Sun Zhang, Rui-Sheng Wang, Ling-Yun Wu, Luonan Chen, Models and Al-
gorithms for Haplotyping Problem, Current Bioinformatics 1, pp. 105–114 (2006)

On the Complexity of SNP Block Partitioning

Under the Perfect Phylogeny Model

Jens Gramm1, Tzvika Hartman2, Till Nierhoff3,
Roded Sharan4, and Till Tantau5

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
gramm@informatik.uni-tuebingen.de

2 Dept. of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
hartmat@cs.biu.ac.il

3 International Computer Science Institute, Berkeley, USA
4 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

roded@tau.ac.il
5 Institut für Theoretische Informatik, Universität zu Lübeck, Germany

tantau@tcs.uni-luebeck.de

Abstract. Recent technologies for typing single nucleotide polymor-
phisms (SNPs) across a population are producing genome-wide genotype
data for tens of thousands of SNP sites. The emergence of such large data
sets underscores the importance of algorithms for large-scale haplotyp-
ing. Common haplotyping approaches first partition the SNPs into blocks
of high linkage-disequilibrium, and then infer haplotypes for each block
separately. We investigate an integrated haplotyping approach where a
partition of the SNPs into a minimum number of non-contiguous subsets
is sought, such that each subset can be haplotyped under the perfect phy-
logeny model. We show that finding an optimum partition is NP-hard
even if we are guaranteed that two subsets suffice. On the positive side, we
show that a variant of the problem, in which each subset is required to ad-
mit a perfect path phylogeny haplotyping, is solvable in polynomial time.

1 Introduction

Single nucleotide polymorphisms (SNPs) are differences in a single base, across
the population, within an otherwise conserved genomic sequence [21]. SNPs ac-
count for the majority of the variation between DNA sequences of different
individuals [19]. Especially when occurring in coding or otherwise functional re-
gions, variations in the allelic content of SNPs are linked to medical condition
or may affect drug response.

The sequence of alleles in contiguous SNP positions along a chromosomal
region is called a haplotype. A SNP commonly has two variants, or alleles, in the
population, corresponding to two of the four genomic letters A, C, G, and T. For
diploid organisms, the genotype specifies for every SNP position the particular
alleles that are present at this site in the two chromosomes. Genotype data
contains information only on the combination of alleles at a given site; it does not
reveal the association of each allele with one of the two chromosomes. Current

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 92–102, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Complexity of SNP Block Partitioning 93

technology, suitable for large-scale polymorphism screening, obtains only the
genotype information at each SNP site. The actual haplotypes in the typed
region can be obtained at a considerably higher cost [19]. Due to the importance
of haplotype information in association studies, it is desirable to develop efficient
methods for inferring haplotypes from genotype information.

Extant approaches for inferring haplotypes from genotype data include parsi-
mony approaches [3,12], maximum likelihood methods [7], and statistical meth-
ods [18,20]. Here we consider a perfect-phylogeny-based technique for haplotype
inference, first introduced in a seminal paper by Gusfield [13]. This approach
assumes that the underlying haplotypes can be arranged in a phylogenetic tree,
so that for each SNP site the set of haplotypes with the same state at this site
forms a connected subtree. The theoretical elegance of the perfect phylogeny
approach to haplotyping as well as its efficiency and good performance in prac-
tice [2,5] have spawned several studies of the problem and its variants [1,5,15].
For more background on perfect phylogeny haplotyping see [14].

A more restricted model is the perfect path phylogeny model [9,10], in which
the phylogenetic tree is a single long path. The motivation for considering path
phylogenies is the discovery that yin-yang (complementary) haplotypes, which
imply that in the prefect phylogeny model any phylogeny has to take the form of
a path, are very common in human populations [22]. We previously found that
over 70% of publicly available human genotype matrices that admit a perfect
phylogeny also admit a perfect path phylogeny [9,10]. In the presence of missing
data, finding perfect path phylogenies appears to be easier since this problem
is fixed-parameter tractable [10], which is not known to be the case for perfect
(branching) phylogenies.

The perfect phylogeny assumption is particularly appropriate for short ge-
nomic regions that have not undergone recombination events. For longer regions,
it is common practice to sidestep the recombination problem by inferring haplo-
types only for small blocks of data and then assembling these blocks to obtain the
complete haplotypes [6]. Thus, the common approach to large-scale haplotyping
consists of two phases: First, partition the data into blocks of SNPs. Then, infer
the haplotypes for each block separately using an algorithm based on the perfect
phylogeny model. Most existing block-partitioning methods partition the data
into contiguous blocks, whereas in real biological data the blocks need not be
contiguous [17].

In this paper we study the computational complexity of a combined approach
that aims at finding a partition of an input set of SNPs into a minimum number
of subsets (not necessarily contiguous), such that the genotype data induced on
each subset is amenable to haplotyping under a perfect phylogeny model. We
consider several variants of this problem. First, we show that for haplotype data
it is possible to check in polynomial time whether there is a perfect phylogeny
partition of size at most two (Section 4). However, for size three and more
the problem becomes NP-hard. The situation for genotype data is even worse:
Coming up with a partition into a constant number of subsets is NP-hard even
if we are guaranteed that two sets suffice (Section 5). On the positive side, we

94 J. Gramm et al.

show that the partitioning problem under the perfect path phylogeny model can
be solved efficiently even for genotype matrices (Section 6). This result implies a
novel haplotyping method that integrates the block partitioning phase and the
haplotyping phase under this model. Moreover, unlike most block-partitioning
techniques, our algorithm does not assume that the blocks are contiguous.

2 Preliminaries and Problem Statement

In this section we provide background on haplotyping via perfect phylogeny and
formulate the partitioning problems that are at the focus of this paper.

2.1 Haplotypes, Genotypes, and Perfect Phylogenies

A haplotype is a row vector with binary entries. Each position of the vector
corresponds to a SNP site, and specifies which of the two possible alleles are
present at that position (we consider only bi-allelic SNPs since sites with more
alleles are rare). For a haplotype h, let h[i] denote the ith position of h. A
haplotype matrix is a binary matrix whose rows are haplotypes. A haplotype
matrix B admits a perfect phylogeny or just is pp if there exists a rooted tree TB

such that:

1. Every row of B labels exactly one node of TB.
2. Each column of B labels exactly one edge of TB.
3. Every edge of TB is labeled by at least one column of B.
4. For every two rows h1 and h2 of B and every column i, we have h1[i] �= h2[i]

iff i lies on the path from h1 to h2 in TB.

A genotype is a row vector with entries in {0, 1, 2}, each corresponding to
an SNP site. A 0- or 1-entry in a genotype implies that the two underlying
haplotypes have the same entry in this position. A 2-entry in a genotype implies
that the two underlying haplotypes differ at that position. A genotype matrix
is a matrix whose rows are genotypes. Two haplotypes h1 and h2 explain (or
resolve) a genotype g if for each position i the following holds: g[i] ∈ {0, 1}
implies h1[i] = h2[i] = g[i]; and g[i] = 2 implies h1[i] �= h2[i]. Given an n ×m
genotype matrix A and a 2n ×m haplotype matrix B, we say that B explains
A if for every i ∈ {1, . . . , n} the haplotypes in rows 2i− 1 and 2i of B explain
the genotype in row i of A. For a genotype g and a value v ∈ {0, 1, 2}, the set
of columns with value v in g is called the v-set of g. Given an n ×m genotype
matrix A, we say that it admits a perfect phylogeny or just is pp if there is a
2n × m haplotype matrix B that explains A and admits a perfect phylogeny.
The problem of determining whether a given genotype matrix admits a perfect
phylogeny, and if it does, finding the explaining haplotypes, is called perfect
phylogeny haplotyping.

In general, the haplotype labeling the root of a perfect phylogeny tree can
have arbitrary ancestral states (0 or 1) at each site. In the directed version of
perfect phylogeny haplotyping the ancestral state of every SNP site is assumed

On the Complexity of SNP Block Partitioning 95

to be 0 or, equivalently, the root of the tree corresponds to the all-0 haplotype.
As shown in [5], one can reduce the general (undirected) problem to the directed
case using a simple transformation of the input matrix: In each column of the
genotype matrix search for the first non-2-entry from above; and if this entry is
a 1-entry, exchange the roles of 0-entries and 1-entries in this column.

2.2 Perfect Path Phylogenies

A perfect path phylogeny is a perfect phylogeny in the form of a path, which
means that the perfect phylogeny may have at most two leaves and branching
occurs only at the root. If a haplotype/genotype matrix admits a perfect path
phylogeny, we say that it is ppp.

The motivation for considering path phylogenies in the context of haplotyping
is the discovery that yin-yang (complementary) haplotypes are very common in
human populations [22]. We previously found, see [10,9], that over 70% of pub-
licly available human genotype matrices that admit a perfect phylogeny also
admit a perfect path phylogeny. In the presence of missing data, finding per-
fect path phylogenies appears to be easier since this problem is fixed-parameter
tractable, which is not known to be the case for perfect (branching) phylogenies.

2.3 Partitioning Problems

Given a set C of columns of a haplotype or genotype matrix, define the following
functions: χpp(C) = min{k | ∃C1, . . . , Ck : C = C1 ∪ · · · ∪Ck, each Ci is pp} and
χppp(C) = min{k | ∃C1, . . . , Ck : C = C1 ∪ · · · ∪ Ck, each Ci is ppp}. By “Ci is
pp” we mean that the matrix formed by the columns in Ci is pp (the pp-property
does not depend on the order of the columns). We call a partition (C1, . . . , Ck)
of C in which each Ci is pp a pp-partition. In a slight abuse of notation we write
χpp(A) for χpp(C), when C is the set of columns in the matrix A. The notation
for ppp is analogously defined.

Our objective in the present paper is to determine the computational com-
plexity of the functions χpp and χppp, both for haplotype matrices and, more
generally, for genotype matrices. The pp-partition problem is to compute χpp

and a partition realizing the optimum value, and the ppp-partition problem is
to compute χppp and a corresponding partition.

Similarly to perfect phylogeny haplotyping, there are directed and undirected
versions of the pp- and ppp-partition problems, but the above-mentioned trans-
formation of Eskin et al. [5] can again be used to reduce the more general undi-
rected case to the directed case. This shows the both versions are equivalent,
allowing us to restrict attention to the directed version in the following.

3 Review of Related Results

In this section we review results from the literature that we use in the sequel.
This includes both results on haplotyping as well as results from order theory.

96 J. Gramm et al.

3.1 The Complexity of Perfect Phylogeny Haplotyping

A polynomial-time algorithm for perfect phylogeny haplotyping was first given
by Gusfield [13]. A central tool in Gusfield’s algorithm and those that followed
it, is the concept of induce: The induce of a genotype matrix A is the set of
rows that is common to all haplotype matrices B that explain A. For exam-
ple, the induce of the genotype matrix (2 2 1

1 0 0) is just {100}, but the induce
of (0 2

1 0) is {00, 01, 10}. A key theorem on perfect phylogenies is the following
(cf. [11]):

Theorem 3.1. (Four-Gamete Test) A haplotype matrix B is pp iff the induce
of any pair of its columns has size at most 3.

For genotype matrices, an induce of size 4 for two columns also means that
the matrix admits no perfect phylogeny, but the converse is no longer true
and a more elaborate algorithm is needed to check whether a genotype matrix
is pp.

3.2 A Partial-Order Perspective on Haplotyping

We now review results from [9] that relate haplotyping to order theory. As shown
in [9], though the result is also implicit in [13], one can characterize the genotype
matrices that admit a directed perfect phylogeny as follows:

Theorem 3.2. A genotype matrix A admits a directed perfect phylogeny iff there
exists a rooted tree TA such that:

1. Each column of A labels exactly one edge of TA.
2. Every edge of TA is labeled by at least one column of A.
3. For every row r of A: (a) the columns in its 1-set label a path from the root

to some node u; and (b) the columns in the 2-set of row r label a path that
visits u and is contained in the subtree rooted at u.

We consider the following partial order � (introduced by Eskin et al. [5]) on
the columns of A: Let 1 � 2 � 0 and extend this order to {0, 1, 2}-columns by
setting c � c′ if c[i] � c′[i] holds for all rows i. The following theorem shows
that the existence of a perfect path phylogeny for a matrix A with column set
C can be decided based on the properties of (C,�) alone, but we first need a
definition.

Definition 3.3. Two columns are separable if each has a 0-entry in the rows
where the other has a 1-entry. We say that a set C of {0, 1, 2}-columns has
the ppp-property if it can be covered by two (possibly empty) chains (C1,�)
and (C2,�), so that their maximal elements are separable, if both are non-empty.
The pair (C1, C2) is called a ppp-cover of C.

Theorem 3.4 ([9]). A genotype matrix A admits a directed perfect path phy-
logeny iff its column set has the ppp-property.

On the Complexity of SNP Block Partitioning 97

3.3 Colorings of Hypergraphs

A hypergraph H = (V, E) consists of a vertex set V and a set E of hyperedges,
which are subsets of V . A hypergraph is k-uniform if each edge has exactly
k elements. A legal χ-coloring of a hypergraph H is a function f : V → {1, . . . , χ}
such that no edge in E is monochromatic. The chromatic number of H is the
minimum χ for which there exists a legal χ-coloring of H .

It has been known for a long time that one can check in polynomial time
whether a graph (a 2-uniform hypergraph) can be 2-colored and that checking
whether it can be χ-colored is NP-hard for every χ ≥ 3. This implies that, for
every k ≥ 2 and every χ ≥ 3, checking whether a k-uniform hypergraph is χ-
colorable is NP-hard. It is even NP-hard to approximate the chromatic number
within a factor of nε, see [16].

4 PP-Partitioning Problems for Haplotype Matrices

In this section we study the complexity of χpp(B) for haplotype matrices B. It
turns out we can decide in polynomial time whether χpp(B) is 1 or 2, but it
is NP-hard to decide whether it is 3 or more. The proofs of these results rely
on easy reductions from χpp, restricted to haplotype matrices, to the chromatic
functions for graphs and back.

Theorem 4.1. There is a polynomial-time algorithm that checks, on input of a
haplotype matrix B, whether χpp(B) ≤ 2.

Proof. By Theorem 3.1 we can check in polynomial time whether χpp(B) =
1 holds. To check whether χpp(B) ≤ 2, we construct the following graph on
the columns of the matrix B: We put an (undirected) edge between every two
columns whose induce has size 4. We claim that χpp(B) ≤ 2 iff the resulting
graph can be colored with two colors. To see this, note that if the chromatic
number of the graph is larger than 2, then any subset of the columns of B will
contain two columns having an induce of size 4. On the other hand, if the graph
is 2-colorable, then the two color classes constitute a covering of the matrix B
in which no color class contains two columns having an induce of size 4. Hence,
by Theorem 3.1, each color class is pp. ��

Theorem 4.2. For every k ≥ 3, it is NP-hard to pp-partition a haplotype ma-
trix B into k perfect phylogenies.

Proof. We prove the claim by presenting a reduction of the NP-hard problem
k-coloring to pp-partitioning a haplotype matrix into k perfect phylogenies.

Reduction. Let a simple undirected graph G = (V, E) be given as input. We
map it to the following haplotype matrix B: There is a column for each vertex
v ∈ V . The first row in B is an all-0 row. For each vertex v there is one row
having a 1 in column v and having 0’s in all other column. Finally, for each edge
{u, v} ∈ E there a row in B having 1-entries in columns u and v and having
0-entries in all other columns.

98 J. Gramm et al.

Correctness. Consider a coloring of the graph G. This coloring induces a parti-
tion of the columns of the matrix B. For any two column of the same class of the
partition, the induce will not contain the bit string 11 and, thus, this class is a
perfect phylogeny by Theorem 3.1. For the other direction, consider a partition
of B into perfect phylogenies. Inside each class the induce of any two different
columns must have size at most 3. Since the induce of any two different columns
always contains 00, 01, and 10, the induce must be missing 11. Hence, for any
two columns in the same class there cannot be an edge in G. Thus, the partition
induces a coloring of the graph G. ��

Theorem 4.3. Unless P = NP, the function χpp cannot be approximated within
a factor of nε for any ε > 0.

Proof. In the reduction given in the proof of Theorem 4.2 the number of per-
fect phylogenies directly corresponds to the number of colors in a coloring. The
coloring problem for graphs is NP-hard to approximate within a factor of nε,
see [16]. ��

5 PP-Partitioning Problems for Genotype Matrices

By the results of the previous section there is little hope of finding (or just com-
ing close to) the minimum number of perfect phylogenies that cover a haplotype
matrix. Since haplotype matrices are just restricted genotype matrices (namely,
genotype matrices in which no 2-entries occur), the situation for genotype ma-
trices can even be worse. The only hope left is that we might be able to find
a partition of the columns of a genotype matrix into exactly two perfect phy-
logenies whenever this is possible in principle. As we saw before, for haplotype
matrices we can find the desired partition in polynomial time.

In the present section we show that for genotype matrices the situation is much
worse: even if we know that two perfect phylogenies suffice, coming up with a
partition into any constant number χ of perfect phylogenies is still “NP-hard.”
By this we mean that every problem in NP can be reduced to the pp-partitioning
problem in such a way that for all genotype matrices A output by the reduction
either χpp(A) ≤ 2 or χpp(A) > χ.

Theorem 5.1. For every χ ≥ 2, it is NP-hard to come up with a pp-partition
of a genotype matrix A into χ classes, even if we know that χpp(A) ≤ 2 holds.

Proof. We reduce from the problem of coloring a 3-uniform, 2-colorable hyper-
graph with a constant number of colors, which is known to be “NP-hard” in the
sense sketched above: In [4] it is shown that every problem in NP can be reduced
to this problem in such a way that the hypergraphs output by the reduction are
3-uniform and either 2-colorable or not χ-colorable.

Reduction. Given a 3-uniform hypergraph H , construct A as follows: A has four
rows per hyperedge and one column per vertex. For each hyperedge h = {u, v, w},
the submatrix of A corresponding to the rows for h and to the columns for u,

On the Complexity of SNP Block Partitioning 99

v, and w is the matrix S :=
(

2 2 2
1 0 0
0 1 0
0 0 1

)
. Every entry of A not contained in such a

submatrix is 0.

Correctness. We show how to construct a pp-partition of the columns of A into
k sets given a k-coloring of H , and how to construct a k-coloring of H given a
pp-partition into k sets.

Given a k-coloring of H with color classes V1, . . . , Vk, let Ci be the columns
corresponding to the vertices of Vi. We claim that each Ci is pp. To this end,
let Ai denote the submatrix of A that consists of the columns Ci. Each row
contains either one 1-entry or up to two 2-entries and otherwise the rows con-
tain only 0-entries: No row can contain three or more 2-entries, because the
maximum number of 2-entries per row of A is three and the columns of these
entries cannot all be contained in Ci, since Vi does not contain whole
hyperedges.

Those rows that do not contain any 2-entries are resolved trivially by having
two copies of these rows in the haplotype matrix. Those containing 2-entries
are replaced by two haplotype rows as follows: If they contain at most one 2-
entry, they are replaced by two copies in which the 2-entry is substituted by
a 0- and a 1-entry. If they contain two 2-entries, in the first copy the 2-entries
are replaced by a 0- and a 1-entry (in this order), in the second copy they
are replaced by 1- and 0-entry (in this order). Other than 2-entries, these rows
only contain 0-entries; so the haplotypes they are replaced by have only one
1-entry.

This way of resolving the genotypes in Ai into haplotypes leaves at most
one 1-entry per row, which implies that the haplotype matrices are pp by the
four-gamete test (Theorem 3.1).

Given a pp-partition (C1, . . . , Ck) of the columns of A, let Vi contain the
vertices corresponding to the set Ci. We claim that no Vi contains a complete
hyperedge in H . Assume for a contradiction that u, v, w ∈ Ci for some i and
that h = {u, v, w} is an edge in H . Then, by the reduction, the submatrix Ai,
consisting of the columns Ci, contains the submatrix S. Consider a replacement
of the first row with a consistent haplotype pair. One of the haplotypes has to
contain two 1-entries and, consequently, there is a pair of columns that induces
all four gametes, a contradiction. �

6 A Polynomial-Time Algorithm for PPP-Partitioning
Genotype Matrices

Our result on the positive side, which we prove in this section, is a polynomial-
time algorithm for ppp-partitioning genotype matrices. The algorithm is based
on reducing the problem to bipartite matching, which can be solved in polyno-
mial time.

Let A be a genotype matrix and let C be the set of columns of A. Let C′ :=
{c′ | c ∈ C} and C′′ := {c′′ | c ∈ C}. Let E1 := {{c′, d′′} | c � d} and

100 J. Gramm et al.

algorithm ppp-partitioning
let G ← (C′ ∪ C′′, E1 ∪ E2)
let M ← maximal matching(G).
let G ← (C′ ∪ C′′, M)
foreach c ∈ C do

let G ← G with the pair {c′, c′′} contracted to a single vertex
foreach connected component X of G do

output the perfect path phylogeny corresponding to X

Fig. 1. A polynomial-time algorithm for finding a ppp-partition

let E2 := {{c′, d′} | c and d are separable}. Fulkerson’s reduction of Dilworth’s
Theorem to the König–Egerváry Theorem consists mainly of the observation
that the matchings M in the bipartite graph (C′, C′′, E1) correspond one-to-
one to the partitions of (C,�) into |C| − |M | chains (see [8] for more details).
Our method for computing χppp(A) relies on the following modification of that
observation:

Theorem 6.1. The matchings M of the graph G = (C′∪C′′, E1∪E2) correspond
one-to-one to the partitions of the set of columns C into k = |C| − |M | subsets
that admit a directed perfect path phylogeny.

Proof. Let M be a matching of G. Contract all pairs of vertices {c′, c′′} to a single
vertex c. The resulting graph (C, M) has maximum degree 2 and contains no cy-
cles. We claim that each vertex set of a component of (C, M) has the ppp-property.
Then, as {c′, c′′} is not an edge for any c, there are |C|−|M | components, and their
vertex sets are a partition into |C|− |M | subsets of C that have the ppp-property.
Indeed, each component of (C, M) can contain at most one edge from E2. If it
does not contain one, the vertices are a chain and thus have the ppp-property. If
it contains an edge from E2, then all other vertices are on two chains below the
end vertices of that edge. So the vertices are covered by two chains whose maximal
elements form an edge in E2 and are therefore separable. Thus, also in this case,
the vertex set has the ppp-property and, by Theorem 3.4, the corresponding set
of columns admits a directed perfect path phylogeny.

Let C1, . . . , Ck be a partition of C into subsets that have the ppp-property.
Each Ci gives rise to a matching of size |Ci| − 1 in the induced subgraph G[C′

i ∪
C′′

i]. The union of these matchings is disjoint and, therefore, a matching of size
|C| − k. ��
The polynomial-time algorithm for ppp-partitioning is summarized in Figure 1.
We now arrive at our main result:

Corollary 6.2. The ppp-partition problem can be solved in polynomial time.

7 Concluding Remarks

In this paper we studied the complexity of SNP block partitioning under the
perfect phylogeny model. We showed that although the partitioning problems

On the Complexity of SNP Block Partitioning 101

are NP-hard for the perfect phylogeny model, they are tractable for the more
restricted perfect path phylogeny model. The contribution is two-fold. On the
theoretical side, this demonstrates again the power of the perfect path phylogeny
model. On the practical side, we present a block partitioning protocol that in-
tegrates the block partitioning phase and the haplotyping phase. We note, how-
ever, that there may be an exponential number of minimal partitions, and thus,
in order to choose the most biologically meaningful solution we might need to
consider also some other criteria for block partitioning. Future directions may
include testing the algorithm on real data, and comparing this method with
other block partitioning methods. Also, it would be interesting to explore the
space of optimal solutions in order to find the most relevant one.

Acknowledgments. JG was supported by a grant for the DFG project Optimal
solutions for hard problems in computational biology. JG, TN and TT were sup-
ported through a postdoc fellowship by the DAAD. TT was supported by a grant
for the DFG project Complexity of haplotyping problems. RS was supported by
an Alon Fellowship.

References

1. V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phy-
logeny: A direct approach. J. of Computational Biology, 10(3–4):323–340, 2003.

2. R.H. Chung and D. Gusfield. Empirical exploration of perfect phylogeny hap-
lotyping and haplotypers. In Proc. 9th Conf. on Computing and Combinatorics
CPM’03, volume 2697 of LNCS, pages 5–19. Springer, 2003.

3. A.G. Clark. Inference of haplotypes from PCR-amplified samples of diploid popu-
lations. J. of Molecular Biology and Evolution, 7(2):111–122, 1990.

4. I. Dinur, O. Regev, and C.D. Smyth. The hardness of 3-uniform hypergraph color-
ing. In Proc. 43rd Symposium on Foundations of Computer Science, pages 33–42,
2002.

5. E. Eskin, E. Halperin, and R.M. Karp. Efficient reconstruction of haplotype struc-
ture via perfect phylogeny. J. of Bioinformatics and Computational Biology, 1(1):1–
20, 2003.

6. E. Eskin, E. Halperin, R. Sharan. Optimally phasing long genomic regions using
local haplotype predictions. In: Proc. 2nd RECOMB Satellite Workshop on Com-
putational Methods for SNPs and Haplotypes, Pittsburgh, Pennsylvania, 2004, pp.
13–26.

7. L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular hap-
lotype frequencies in a diploid population. Molecular Biology and Evolution,
12(5):921–927, 1995.

8. S. Felsner, V. Raghavan, and J. Spinrad. Recognition algorithms for orders of small
width and graphs of small Dilworth number. Order, 20:351–364, 2003.

9. J. Gramm, T. Nierhoff, R. Sharan, and T. Tantau. Haplotyping with missing data
via perfect path phylogenies. Discrete Applied Mathematics, 2006. In press.

10. J. Gramm, T. Nierhoff, and T. Tantau. Perfect path phylogeny haplotyping with
missing data is fixed-parameter tractable. In Proc. 2nd International Workshop on
Parameterized and Exact Computation IWPEC’04, volume 3162 of LNCS, pages
174–186. Springer-Verlag, 2004.

102 J. Gramm et al.

11. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19–
28, 1991.

12. D. Gusfield. Inference of haplotypes from samples of diploid populations: complex-
ity and algorithms. J. of Computational Biology, 8(3):305–323, 2001.

13. D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions. In Proc. 6th Conf. on Computational Molecular Biology RECOMB’02,
pages 166–175. ACM Press, 2002.

14. D. Gusfield and S.H. Orzack. Haplotype Inference. In CRC Handbook on Bioin-
formatics, 2005.

15. E. Halperin and R.M. Karp. Perfect phylogeny and haplotype assignment. In Proc.
8th Conf. on Computational Molecular Biology RECOMB’04, pages 10–19. ACM
Press, 2004.

16. C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. J. of the ACM, 45(5):960–981, 1994.

17. C.S. Carlson, M.A. Eberle, L. Kruglyak and D.A. Nickerson. Mapping complex
disease loci in whole-genome association studies Nature, 429:446–452, 2004.

18. T. Niu, S. Qin, X. Xu, and J. Liu. Bayesian haplotype inference for multiple linked
single nucleotide polymorphisms. American J. of Human Genetics, 70(1):157–69,
2002.

19. N. Patil, A.J. Berno, D.A. Hinds, et al. Blocks of limited haplotype diver-
sity revealed by high-resolution scanning of human chromosome 21. Science,
294(5547):1719–1723, 2001.

20. M. Stephens, N. Smith, and P. Donnelly. A new statistical method for haplotype
reconstruction from population data. American J. of Human Genetics, 68(4):978–
989, 2001.

21. D.G. Wang, J.B. Fan, C.J. Siao, A. Berno, P.P. Young, et al. Large-scale identifi-
cation, mapping, and genotyping of single nucleotide polymorphisms in the human
genome. Science, 280(5366):1077–1082, 1998.

22. J. Zhang, W.L. Rowe, A.G. Clark, and K.H. Buetow. Genomewide distribution
of high-frequency, completely mismatching SNP haplotype pairs observed to be
common across human populations. American J. of Human Genetics, 73(5):1073–
1081, 2003.

How Many Transcripts Does It Take to
Reconstruct the Splice Graph?

Paul Jenkins, Rune Lyngsø, and Jotun Hein

Dept. of Statistics, Oxford University, Oxford, OX1 3TG, United Kingdom
{jenkins, lyngsoe, hein}@stats.ox.ac.uk

Abstract. Alternative splicing has emerged as an important biologi-
cal process which increases the number of transcripts obtainable from a
gene. Given a sample of transcripts, the alternative splicing graph (ASG)
can be constructed—a mathematical object minimally explaining these
transcripts. Most research has so far been devoted to the reconstruc-
tion of ASGs from a sample of transcripts, but little has been done on
the confidence we can have in these ASGs providing the full picture of
alternative splicing. We address this problem by proposing probabilis-
tic models of transcript generation, under which growth of the inferred
ASG is investigated. These models are used in novel methods to test
the nature of the collection of real transcripts from which the ASG was
derived, which we illustrate on example genes. Statistical comparisons of
the proposed models were also performed, showing evidence for variation
in the pattern of dependencies between donor and acceptor sites.

1 Introduction

Alternative splicing allows the creation of multiple mRNA transcripts from a
single gene. Splicing takes place after the initial transcription of DNA into pre-
cursor (pre-) mRNA and before its translation. The process modifies pre-mRNA
by discarding certain regions—known as introns—and retaining the rest. The re-
sulting strand of ligated exons—retained sections—composes the mature mRNA,
and by ligating different combinations of exons multiple mRNAs can be synthe-
sised. Studies suggest that in many eukaryotes it is highly prevalent: as many
as 74% of human genes undergo alternative splicing [1], with some genes able
to produce a large number of different transcripts. Around 5% of human genes
may each provide more than 100 putative transcripts [2]. Alternative splicing
can therefore account for a number of otherwise unresolved problems, such as
the discrepancy between the size of the human proteome and the smaller genome
from which it is derived. It is also thought that alternative pre-mRNA splicing
is a central mode of genetic regulation in higher eukaryotes (e.g., [3])—one well
characterized example is the sexual identity of Drosophila melanogaster [4, 5].
Alternative splicing is therefore of central importance, and can now be studied
in more depth thanks to the development of tools such as expressed sequence
tags (ESTs) and, in recent years, microarray analyses [1, 6].

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 103–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

104 P. Jenkins, R. Lyngsø, and J. Hein

Fig. 1. Basic patterns of alternative splicing. Exons are shown as rectangles. Consti-
tutive exons are in light grey, regions which may be spliced out in dark grey. Black
lines represent paths of translation, from left to right. A. Cassette exon. B. Retained
intron. C. Alternative 5’ site. D. Alternative 3’ splice site. E. Alternative promoter
site. F. Alternative polyadenylation site. G. Mutually exclusive exons.

Exons can be spliced in different ways. Most exons are constitutive, that is,
always retained in the mRNA. Exons either fully omitted or fully included are
called cassette exons. Alternative splice sites are also found within individual
exons, known as alternative 5’ or 3’ splice sites. The mRNAs themselves may
have alternative 5’ or 3’ ends, with alternative selection of the 5’-most or 3’-most
exons. Finally a retained intron denotes an intron flanked by exons that is also
included in the final mRNA. These ‘building blocks’ are illustrated in Figure 1
(see also [4]). Some or all of these patterns may be observed from translations of a
gene’s mRNA, leading to potentially complex overall splicing patterns (Figure 2).
Traditionally the transcriptome of a gene has been represented by an exhaustive
list of its splice variants. However, as the prevalence of alternative splicing has
become apparent, a need for more concise notation has emerged. Heber et al. [7]
introduce the idea of the alternative splice graph (ASG), which enables the set of
possible transcripts to be represented in a single graph, avoiding the error-prone
nature of case-by-case transcript reconstruction. Denote the ASG as G = (V,E),
defined as follows. Let {s1, ..., sn} be the set of RNA transcripts of the gene
of interest, with each sk corresponding to a sequence of genomic positions Vk

(Vi �= Vj for i �= j). Define V :=
⋃

i Vi, the set of all transcribed positions, and
E := {(v, w) : v and w form consecutive positions in at least one transcript si}.
Hence the ASG G is a directed graph and a putative transcript is any path in G.
The graph is also acyclic, since the exons present in any spliced transcript are
retained in the correct 5’ to 3’ linear order [8, 9]. Finally strings of consecutive
vertices with indegree = outdegree = 1 are collapsed into a single vertex. So each
exon fragment (i.e. portion of an exon bounded by two splice sites) is represented
as a single vertex. This enables the ASG to be illustrated in a similar manner to
that shown in Figure 2—the numbered blocks are vertices, and the arcs read from
left to right are directed edges. The ASG is a convenient, compact representation
of all the splicing events associated with a particular gene, and lends itself to
much further investigation.

How Many Transcripts Does It Take to Reconstruct the Splice Graph? 105

Fig. 2. An example of more complicated splicing patterns: human gene neurexin III-β
(Ensembl ID ENSG00000021645, gene not to scale). Splicing events are represented by
curved edges. The fragment labelled 6 is a cassette exon. More complicated and nested
relationships are also visible. Edge thicknesses are proportional to EST support for
that splicing event. ESTs from which the ASG was reconstructed are aligned below.
Image derived from the Alternative Splicing Gallery [2].

Note the number of putative transcripts of an ASG equals or exceeds the
number of distinct transcripts used to construct the ASG. The assumption that
any path through the ASG represents a putative transcript in effect assumes
that splicing events are independent. In this paper we propose two ASG based
Markovian models of isoform generation to investigate this independence as-
sumption. We further introduce simulation based and graph theoretical algo-
rithms to investigate the question of whether the existing transcripts associated
with a given gene are likely to have come from a random sample or from a
strongly pruned subset of the transcriptome, either through non-independence
of exons or through other effects such as ascertainment bias.

2 Transcript Generation Models

We propose two simple models of transcript generation, each utilising differ-
ent parameter spaces. The process in our models is Markov in the sense that
if we reach a particular exon fragment, the following fragment to be included
does not depend on any other earlier decisions upstream. There exists a prob-
ability distribution over the transcriptome of a given gene, which can be mod-
ified conditional on additional knowledge, such as a cell’s tissue type. For now
we will not assume such further knowledge, which in many cases this will not
unduly affect the distribution of interest. Tissue-specific control appears to be
restricted to a relatively small number of specialised genes: only 2.2% of al-
ternative splicing relationships have been observed with high confidence to be
tissue-specific [10]. Tissue-specific control would cause a higher degree of exon
coupling, since transcripts are effectively generated from two overlapping, yet
distinct, sub-ASGs.

106 P. Jenkins, R. Lyngsø, and J. Hein

Fig. 3. Transcript generation of a simple example gene under each model. Constitutive
exon shown in light grey. Exons which may be spliced out shown in dark grey. In this
example label members of V as 1, . . . , 4, so that I = {1}, pstart

1 = 1, T = {3, 4}; the
read is terminated on reaching the 3’ end of exon 3 or 4. (Left) Pairwise model. P is
the zero matrix other than p12, p23 and p14 (p23 = 1). (Right) In-out model. Here,
pin = (0, 0, pin

3 , pin
4) and pout = (pout

1 , pout
2 , 0, 0) (with pout

2 = 1).

2.1 Model 1: Pairwise Model

We approximate the discrete structure of a gene by an interval of the real line
[0,L]. Superimposed on the gene is a (fixed) set V of exon fragments, a collection
of subsets of the line (as in Figure 2). Based on the underlying ASG there exist
pairwise probabilities for each pair of fragments (v1, v2) that have been observed
to be adjacent in at least one transcript, representing the probability that, as we
read through the mRNA’s sequence, if it contains v1 we then jump forward to
v2. These probabilities can be captured as a |V | × |V | strictly upper triangular
probability matrix P , with entries defined by pij = probability of a transcript
jumping from fragment i to fragment j, given that it contains i.

To account for the features of Figure 1, define sets I, T ⊆ V of initiation
fragments and terminal fragments, respectively. For each walk, rather than be-
ginning at 0 proceed randomly with probability pstart

i from i ∈ I. Similarly, for
each walk that reaches a fragment t ∈ T , transcript generation is terminated
at the 3’ end of that fragment. Thus, the complete model is captured by the
collection (V, P, I,pstart, T)—see Figure 3. Intuitively this is the most general
model consistent with observed splicing events that assumes independence be-
tween splicing events.

2.2 Model 2: In-Out Model

The pairwise model allows the modelling of dependencies between the donor
and acceptor sites in a splicing event. As an alternative, we will also consider
the most general model consistent with observed splicing events that models
‘donation’ and ‘acceptance’ of the splicing event independently. With each exon
fragment x ∈ V , associate two probabilities pin

x , pout
x , the probabilities of jumping

‘into’ and ‘out of’ the the gene. Conceptually we can imagine travelling along
the real line from 0 to L, and as we reach each exon fragment jumping ‘in’
with probability pin if we are ‘out’, then jumping ‘out’ with probability pout

if we are ‘in’. This in effect models inclusion of isolated exons as independent
events, where each exon is included with a probability reflecting the strength of
its acceptor site. Note that at most two probabilities are used at each fragment
rather than up to n = |V | for each in the pairwise model. The in-out model seeks

How Many Transcripts Does It Take to Reconstruct the Splice Graph? 107

to explain the splicing events we observe with only O(n) parameters, compared
to the O(n2) parameters of the pairwise model. I, T ⊆ V and pstart are defined
as in the pairwise model. Thus, the complete model is captured by the collection
(V,pin,pout, I,pstart, T) (Figure 3).

2.3 Hypothesis Testing

The in-out model is nested in the pairwise model; we can represent an in-
out model (S,pin,pout, I,pstart, T) as a pairwise model (S, P, I,pstart, T) with
pij = pout

i pin
j

∏
i<k<j(1−pin

k). In a similar way, the pairwise model can be emded-
ded in what we’ll refer to as model 0, that which simply assigns a probability
to each putative transcript. Given a gene we can propose the following test
for assessing the relative applicability of two models a, b, with b ⊆ a. For
a given sample of transcripts {s1, . . . , sn} define the likelihood ratio statistic
Λ = supqb

Lb(qb)/ supqa
La(qa), where qa,qb are the parameters under each

model and La, Lb are the likelihoods of the data under each model, assum-
ing independent sampling. The probability of each transcript is the product
of the relevant probabilities involved in its generation. For example in Figure 3,
P (1∪2∪3) = p12p23 under the pairwise model and P (1∪2∪3) = (1−pout

1)pout
2 pin

3

under the in-out model. If the in-out model holds then −2 ln Λ ∼̇χ2(z), where z
is the number of degrees of freedom.

3 ASG Recovery Tests

3.1 Model Based Tests

Once we have a model describing transcript generation from an ASG, we can
address the highly relevant question of the confidence we have in knowing the
full true ASG. We propose a bootstrap-like method to assess the likelihood that
the full ASG has been reconstructed, or alternatively to detect ascertainment
biases in existing transcript databases, using a transcript generation model as
follows. Assume that we have reconstructed an ASG from m transcripts. We
may then ask what the probability is of drawing m independent samples from
the full ASG that covers all edges in the full ASG. This can be computed ex-
actly, albeit very inefficiently. Alternatively one can repeatedly sample m tran-
scripts from the full ASG and check whether all edges are represented in these
transcripts (or, if the in-out model is assumed, whether all choices are repre-
sented) to obtain a p-value for the scenario of recovering the full ASG from
m transcripts.

Unfortunately, we do not necessarily know the full ASG but only the inferred
ASG. So what can we expect if we sample from the inferred ASG? Assume that
the inferred ASG is in fact the full ASG, and that the chosen model of transcript
generation holds. Then we are indeed sampling from the full ASG and we can
expect the rejection rate—i.e. the false negative rate—to equal one minus the
p-value computed. If the inferred ASG does not coincide with the full ASG, the

108 P. Jenkins, R. Lyngsø, and J. Hein

acceptance rate—i.e. the false positive rate—cannot be similarly tied to the p-
value computed. Indeed if m = 1, the inferred ASG will offer only one putative
transcript and our sampling test will always accept the inferred ASG. However,
as shown in Section 4, the false positive rate does seem to follow the p-value
threshold for realistic data. Intuitively, if after m transcripts the ASG is fully
recovered, or close to it, then there is a higher probability of some redundancy
in the real collection of transcripts—indicating that they do indeed cover the
whole ASG. Alternatively, if in general sampling m transcripts does not recover
the ASG then there is little redundancy in the collection, and hence a higher
probability that there exist other undiscovered edges.

If testing whether a fraction α of the full ASG has been recovered, we are
on even less solid ground. Sampling from the inferred ASG and accepting if a
fraction α of the inferred ASG has been recovered, not even the false negative rate
can be theoretically linked to the p-value computed. Assume that the full ASG
offers three possible transcripts and that m = 2 and α = 2

3 . With probability 2
3

the inferred ASG will be based on two different transcripts, i.e. offer two possible
transcripts. However, sampling from the inferred ASG we only achieve a p-value
of 1

2 for having recovered a fraction of α of the full ASG. Again we refer to
Section 4 for empirical results on the usefulness of our computed p-value on
realistic data.

3.2 ASG Based Tests

Without an accepted model for the alternative splicing observed for a gene, we
cannot simulate transcript generation. We may however still make a qualitative
assessment of the validity of the reconstructed ASG—or alternatively of whether
transcripts are fully determined by regulatory factors rather than generated
according to the combinatorial model implicit in the ASG representation—in
the context of the transcripts used to reconstruct it by considering informative
transcripts. A transcript is considered informative if it reveals one or more new
edges of the ASG. A transcript corresponds to a path through the ASG. So a set
of transcripts elucidating the full potential of the ASG uniquely corresponds to a
set of paths covering all the edges in the ASG (i.e. a set of paths P = {P1, . . . , Pk}
such that every edge of the ASG occurs in at least one path Pi in P). For
convenience we will assume that all paths have to start at source s and terminate
at sink t. This can be realised by amending the ASG with s that has edges
to all initiation fragments and t that all terminal fragments have an edge to.
If G = (V,E) denotes the ASG, it is a straightforward observation that the
maximum number of informative transcripts is

2 + |E| − |V | . (1)

The minimum number of informative transcripts is equivalent to a minimum
path cover, a classic problem related to maximum flow (see e.g. [11]). For ref-
erence, algorithm 1 provides a simple augmenting path solution for reducing
any path cover to a minimum path cover in time O((|V | + |E|) |P|) where P
is the initial path cover. For each edge e ∈ E, its weight w(e) is initialised to

How Many Transcripts Does It Take to Reconstruct the Splice Graph? 109

Algorithm 1. Minimum Path Cover
while there is a non-cyclic path π from s to t in Gw do

for all edges e ∈ π do
if e ∈ E then

w(e) ← w(e) − 1
else

w(e) ← w(e) + 1
Recompute Gw

the number of paths covering e in the initial cover. Define Gw = (V,Ew) where
Ew = {e ∈ E | w(e) > 1} ∪ {(v,u) | (u, v) ∈ E}. I.e. Gw contains all edges
covered by more than one path, and the reverse edge of all the edges in G. At
termination the minimum path cover size can be determined as the sum of the
weights of the edges leaving the source node.

4 Results

We are interested in choosing a model relevant to an ASG constructed from real
transcripts. Ideal for obtaining large-scale data on alternative splicing events is
microarray technology, but this is still in its infancy, with only a handful of large-
scale investigations into exon skipping events [12,13]. Ultimately it is hoped that
the ability to attach accurate inclusion rates to individual exons, and even the
possibility of sampling full-length mRNA transcripts [14] will be possible. For
illustrative purposes we must now content ourselves with using ESTs, whilst
being mindful of their limitations [15], e.g. ESTs exhibit a strong bias for the
3’ end of the gene. The Alternative Splicing Gallery [2] catalogues EST support
for each human gene, from which maximum likelihood estimates (MLEs) for the
probabilities associated with each exon fragment can be calculated via a sim-
ple transcript counting argument. We apply this to an example gene, Neurexin
III-β; alternative splicing in neurexins has been well-characterized [16]. Consider
Figure 2. EST support for this gene suggests several distant exon coupling re-
lationships, for example between exons 6 and 10. For convenience extend any
partial EST to its full-length counterpart if this can be achieved unambiguously,
otherwise omit it. A hypothesis test comparing model 0 against the pairwise
model yields a p-value of 0.0026, confirming our suspicion that entirely indepen-
dent splicing of exons may not be applicable for this gene.

For genes with larger ASGs, the cardinality of the set of all putative transcripts
and hence the number of parameters required for use with model 0 can grow ex-
ponentially with the number of alternative splice sites, so that a large number
of observations are required to accept model 0. At present these are generally
lacking (suggesting that in fact the true ASG has not yet been observed—see
Section 3.1), so for these genes we must either focus on short alternatively splic-
ing regions, or instead we can test the relative merits of the pairwise and in-out
models to provide some measure of the dependence in splicing between different

110 P. Jenkins, R. Lyngsø, and J. Hein

0 20 40 60 80 100
0

20

40

60

0 20 40 60 80 100
0

20

40

60

0 5 10 15 20 25
0

500

1000

1500

2000

2500

Fig. 4. (Left) Ten simulated reconstructions of the ASG for human gene ABCB5,
under the pairwise model. Number of sampled transcripts (x-axis) is plotted against
size of the reconstructed ASG (y-axis). Full ASG size shown as a dashed line. Minimal
possible number of transcripts annotated as a vertical line. (Centre) Mean number of
reconstructed edges across 10000 simulations ±1 standard deviation. (Right) Histogram
across 10000 simulations of number of informative transcripts. Maximum and minimum
number of such transcripts are annotated.

exons. As an example consider the gene ABCB5, one of the 89 human genes
known to offer more than 5000 putative transcripts [2]. It is a gene of interest
also due to its association with drug resistance in human malignant melanoma,
with both functional and non-functional splicing variants [17]. The likelihood
ratio test was applied to four regions of the gene observed to exhibit alternative
splicing. We make the additional assumption that these regions are bounded by
constitutive exons, prohibiting under the models the splicing together of frag-
ments from disparate regions of the gene (which would unnecessarily increase
the parameter space in order to accommodate splicing events of negligible prob-
ability). p-values for the four regions are 0.000, 0.029, 0.001, 0.000; the overall
p-value is 0.000. All 89 genes were similarly tested: of them, 13 were deemed
not to comprise any testable regions. Of the remaining 76 genes, 20 (26%) were
accepted at the 5% level to be described by the in-out model. These seem to
be the genes for which the assumption of independence between exons is most
applicable.

We infer that ABCB5 is most suitably described by the pairwise model. Let
us suppose then that transcripts are generated for ABCB5 under the pairwise
model. Reconstruction of the ASG under this model is summarized in Figure 4,
with the minimal number of transcripts required to recover the ASG annotated.
The size of the ASG is measured in the number of its recovered edges. The
probabilities for the pairwise model are chosen using MLEs described previously.
Consider Figure 4(left). The 10 example simulations generally follow the growth
curves one would expect of sampling with replacement. In some simulations the
last few edges persist in remaining undiscovered even after the generation of
100 transcripts, but by 20 transcripts the mean proportion of the ASG to have
been recovered is 90.8% (Figure 4(centre)). What does this indicate about the
probability that the 20 ESTs used to construct the ASG in the first place did in
fact construct the complete ASG? If we apply our bootstrap-like method, none
of the set of simulated transcript samples successfully recovers the full ASG
resulting in a p-value of 0.

But how much can the p-value be trusted? To answer this we set up an ex-
periment using the ABCB5 pairwise model as the true source for generating

How Many Transcripts Does It Take to Reconstruct the Splice Graph? 111

0 50 100 150
0

20

40

60

80

100

0 50 100 150
0

20

40

60

80

100

0 50 100 150
0

20

40

60

80

100

0 50 100 150
0

20

40

60

80

100

0 50 100 150
0

20

40

60

80

100

0 50 100 150
0

20

40

60

80

100

0.8
0.9
0.95
0.99
0.999

Fig. 5. Results of experiment described in text. Number of sampled transcripts (x-
axis) is plotted against percentage of experiments (y-axis): percentage recovering the
full ASG (left), percentage not recovering the full ASG (centre) and both (right). The
fraction of such experiments for which the inferred ASG is accepted as the true ASG
is shown for various confidence levels. The first row illustrates results for full recovery
of the ASG, the second row for α = 90% recovery of the full ASG.

transcripts. From this we repeatedly sampled m transcripts and computed the
p-value for the ASG inferred from these m transcripts. This was repeated for var-
ious choices of m. The outcome of this experiment is illustrated in Figure 5(top).
Both the fraction of graphs inferred from m transcripts coinciding with the full
ASG, and the fraction of inferred graphs accepted at various acceptance rates
are plotted. Encouragingly, it is evident from the righthand graph that there is
a strong correlation between when we start to recover the full ASG and when
we start to accept the inferred ASG. This indicates that our p-value does indeed
capture whether the transcripts contain sufficient redundancy.

Note that the central graph, which plots acceptances of non-fully recovered
inferred ASGs, separates the type II errors; any accepted graphs here are false
positives. Similarly the lefthand graph, which plots acceptances of fully recovered
inferred ASGs, separates the type I errors; any graph not accepted here is a false
negative. As anticipated in Section 3.1, for very low m most experiments yield
a high false positive rate, but in all our simulations this effect quickly dies away
by m = 3.

For ABCB5, no acceptances are observed at the 20 transcript level, and we
safely deduce that a scenario of independent random samples from a fully recov-
ered ASG is not supported. This implies that either the ASG derived from the
real 20 transcripts is a proper subset of the true ASG, or that the collection of
transcripts used to infer the ASG is likely to be biased in the sense that there is
little redundancy in the collection, and an emphasis rather on novel transcripts.
As mentioned above, such an observation seems likely in a database with both
human and biological biases. We performed a similar detailed investigation into
all 56 genes with more than 5000 putative transcripts satisfying the pairwise
model (data not shown) and found that in no cases was the reconstructed ASG

112 P. Jenkins, R. Lyngsø, and J. Hein

Fig. 6. Partial recovery results for nine different values of α, ranging from full ASG
recovery to recovery of half the ASG. Fraction accepted as recovered to degree α at
confidence level 0.95 is plotted against fraction recovered to degree α.

accepted at confidence 0.95. Thus all could reasonably be said to exhibit a bias in
their transcript records. This should of course be taken with the caveats associ-
ated with ESTs and the assumption that transcript generation is assumed to be
correctly described by the pairwise model, along with the fact that by choosing
complex genes to begin with these results will not be indicative of the rest of
the genome. But this illustration offers a novel first step towards a method for
teasing out the complex relationships discussed, which are not discernible from
the ASG alone.

As mentioned in Section 3.1 we cannot expect our assessment of partial ASG
recovery to be as precise as our assessment of full ASG recovery. To further
investigate dependence on α of the quality of the p-value computed we ran
experiments similar to those plotted in Figure 5 for a range of α values with
confidence level 0.95. Figure 6 plots the fraction of accepted ASGs against the
fraction of inferred ASGs containing at least a fraction α of the edges in the
ABCB5 ASG. Ideally we would expect a phase transition from no accepted
ASGs to all ASGs being accepted around the point where 95% of the inferred
ASGs contain at least α of all edges. This is indeed observed for high values of
α, but for α values lower than 0.9 there is an increasing tendency toward a mere
linear relationship between ASG recovery and ASG acceptance. Remembering
that ASG acceptance is more likely for a false positive than for a true positive
it is thus clear that our method should not be applied for low α values.

5 Discussion

In this work we have proposed a mathematical framework to consider how to
predict the nature of transcript generation in alternatively splicing genes. These
models can be used make inferences on questions such as the levels of inde-
pendence in exon splicing and the confidence with which we can be sure that a
complete ASG has been recovered. We have also considered algorithms for calcu-
lating the minimum and maximum number of informative transcripts available
from an ASG. Source code, as well as the statistical tests outlined and their

How Many Transcripts Does It Take to Reconstruct the Splice Graph? 113

results, are available from http://www.stats.ox.ac.uk/∼jenkins/ASG/. Our
method for testing the coverage of an ASG by its transcripts can provide exper-
imentalists with a way to quantify any bias in the distribution of the transcrip-
tome. In our examples we have been restricted to existing EST data, which can
be somewhat limited both in quality and quantity. Quantitative analysis of the
ASG will become far more fruitful when high-throughput microarray data on
alternative splicing is more readily available, from which accurate probabilities
can be associated with each splicing event. An important next step will then
be to begin to incorporate knowledge of tissue-specific expression of particular
isoforms, which has thus far been näıvely omitted.

Unfortunately most current microarray studies focus on individual splicing
events—only 12.8% of alternative splicing relationships have been detected in
full-length transcripts [10], but we envisage this to improve as the need to ob-
serve whole transcripts pushes the technology in this direction. When full-length
transcripts are available, one way to look more closely at the conditional proba-
bilities inherent in an ASG would be to focus on those transcripts revealing new
edges to the ASG during sampling. The resulting ‘signature’ histogram can be
compared to the same histogram generated by transcript simulation from one
of the models, i.e. assuming no exon coupling (Figure 4(right)). This figure and
other of our tests suggest that a simple model for the distribution is Gaussian
with mean between the minimum and maximum number of informative tran-
scripts. Thus for example, strong positive correlation between exons would skew
the distribution towards the minimum, compared to the distribution observed
under the models. Across the 56 genes satisfying the pairwise model, the distrib-
ution of the mean number of informative transcripts reported was centred about
0.61 of the genes’ ranges (i.e. between the minimum and maximum number of in-
formative transcripts). All but 29 reported a mean in the range (0.5, 0.7) and all
but 7 were inside (0.4, 0.8). For each gene the standard deviation in informative
transcripts was less than 0.13 of the range.

Acknowledgements

Gil Ast and Richard Copley are thanked for their advice on which genes would
be interesting. An anonymous reviewer is thanked for helpful comments. Thanks
also to the LSI DTC at Oxford and to the EPSRC and BBSRC for its funding.

References

1. Johnson, J.M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P.M., Armour, C.D.,
Santos, R., Schadt, E.E., Stoughton, R., Shoemaker, D.D.: Genome-wide survey
of human alternative pre-mRNA splicing with exon junction microarrays. Science
302 (2003) 2141–2144

2. Leipzig, J., Pevzner, P., Heber, S.: The alternative splicing gallery (ASG): bridging
the gap between genome and transcriptome. Nucleic Acids Research 32 (2004)
3977–3983

114 P. Jenkins, R. Lyngsø, and J. Hein

3. Lareau, L.F., Green, R.E., Bhatnagar, R.S., Brenner, S.E.: The evolving roles of
alternative splicing. Current Opinions in Structural Biology 14 (2004) 273–282

4. Black, D.L.: Mechanisms of alternative pre-messenger RNA splicing. Annual Re-
view of Biochemistry 72 (2003) 291–336

5. Lopez, A.J.: Alternative splicing of pre-mRNA: developmental consequences and
mechanisms of regulation. Annual Review of Genetics 32 (1998) 279–305

6. Pan, Q., Shai, O., Misquitta, C., Zhang, W., Saltzman, A.L., Mohammad, N.,
Babak, T., Siu, H., Hughes, T.R., Morris, Q.D., Frey, B.J., Blencowe, B.J.: Re-
vealing global regulatory features of mammalian alternative splicing using a quan-
titative microarray platform. Molecular Cell 16 (2004) 929–941

7. Heber, S., Alekseyev, M., Sze, S.H., Tang, H., Pevzner, P.A.: Splicing graphs and
EST assembly problem. Bioinformatics 18 (2002) S181–188

8. Black, D.L.: A simple answer for a splicing conundrum. Proceedings of the National
Academy of Sciences of the United States of America 102 (2005) 4927–4928

9. Ibrahim, E.C., Schaal, T.D., Hertel, K.J., Reed, R., Maniatis, T.: Serine/arginine-
rich protein-dependent suppression of exon skipping by exonic splicing enhancers.
Proceedings of the National Academy of Sciences of the United States of America
102 (2005) 5002–5007

10. Lee, C., Atanelov, L., Modrek, B., Xing, Y.: ASAP: the alternative splicing anno-
tation project. Nucleic Acids Research 31 (2003) 101–105

11. Li, W.N., Reddy, S.M., Sahni, S.: On path selection in combinational logic circuits.
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems
8 (1989) 56–63

12. Lee, C., Roy, M.: Analysis of alternative splicing with microarrays: successes and
challenges. Genome Biology 5 (2004) 231

13. Lee, C., Wang, Q.: Bioinformatics analysis of alternative splicing. Briefings in
Bioinformatics 6 (2005) 23–33

14. Castle, J., Garrett-Engele, P., Armour, C.D., Duenwald, S.J., Loerch, P.M., Meyer,
M.R., Schadt, E.E., Stoughton, R., Parrish, M.L., Shoemaker, D.D., Johnson, J.M.:
Optimization of oligonucleotide arrays and RNA amplification protocols for analy-
sis of transcript structure and alternative splicing. Genome Biology 4 (2003) R66

15. Modrek, B., Lee, C.: A genomic view of alternative splicing. Nature Genetics 30
(2002) 13–19

16. Tabuchi, K., Südhof, T.C.: Structure and evolution of neurexins: insight into the
mechanism of alternative splicing. Genomics 79 (2002) 849–859

17. Frank, N.Y., Margaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A.M.,
Gassser, M., Sayegh, M.H., Sadee, W., Frank, M.H.: ABCB5-mediated doxorubicin
transport and chemoresistance in human malignant melanoma. Cancer Research
65 (2005) 4320–4333

Multiple Structure Alignment and Consensus
Identification for Proteins

Jieping Ye1, Ivaylo Ilinkin2, Ravi Janardan3, and Adam Isom3

1 Arizona State University, Tempe, AZ 85287, USA
jieping.ye@asu.edu

www.public.asu.edu/~jye02/
2 Rhodes College, Memphis, TN 38112, USA

ilinkin@rhodes.edu
www.rhodes.edu/MathematicsandComputerScience/FacultyandStaff/ilinkin.cfm

3 University of Minnesota, Minneapolis, MN 55455, USA
{janardan, aisom}@cs.umn.edu

www.cs.umn.edu/~{janardan, aisom}

Abstract. An algorithm is presented to compute a multiple structure
alignment for a set of proteins and to generate a consensus structure
which captures common substructures present in the given proteins. The
algorithm is a heuristic in that it computes an approximation to the opti-
mal alignment that minimizes the sum of the pairwise distances between
the consensus and the transformed proteins. A distinguishing feature of
the algorithm is that it works directly with the coordinate representation
in three dimensions with no loss of spatial information, unlike some other
multiple structure alignment algorithms that operate on sets of backbone
vectors translated to the origin; hence, the algorithm is able to generate
true alignments. Experimental studies on several protein datasets show
that the algorithm is quite competitive with a well-known algorithm
called CE-MC. A web-based tool has also been developed to facilitate
remote access to the algorithm over the Internet.

1 Introduction

Proteins are macromolecules that regulate all biological processes in a cellular
organism [1]. The human body has about one hundred thousand different pro-
teins that control functions as diverse as oxygen transport, blood clotting, tissue
growth, immune system response, inter-cell signal transmission, and the catalysis
of enzymatic reactions.

Proteins are synthesized within the cell and immediately after its creation each
protein folds spontaneously into a three-dimensional (3D) configuration that is de-
termined uniquely by its constituent amino acid sequence [14]. It is this 3D struc-
ture that ultimately determines the function of a protein, be it the catalysis of a
reaction or the growth of muscle tissue or arming the body’s immune system. In-
deed, it is the case that where proteins are concerned “function follows form” [13].

Proteins have evolved over time through the modification and re-use of certain
substructures that have proven successful [7]. It is well known [9] that during this

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 115–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 J. Ye et al.

process, structure is better conserved than sequence, i.e., proteins that are related
through evolution tend to have similar structures even though their sequences
may be quite different. Thus, the ability to identify common substructures in a
set of proteins could yield valuable clues to their evolutionary history and func-
tion. This motivates the multiple structure alignment problem that we consider
in this paper: Informally, given a collection of protein structures, we seek to align
them in space, via rigid motions, such that large matching substructures are re-
vealed. A further goal is to extract from this alignment a consensus structure
that can serve as a proxy for the whole set, and could be used, for instance, as a
template to perform fast searches through protein structure databases, such as
the PDB, to identify structurally similar proteins.

1.1 Contributions

In this paper, we present an algorithm to compute a multiple structure align-
ment for a set of proteins and to generate a consensus structure. Our algorithm
computes an approximation to the optimal multiple structure alignment, i.e., one
that minimizes the so-called Sum-of-Consensus distance (SC-distance) between
the consensus structure and the given set of proteins. (A more precise definition
is given in Section 2.)

Our algorithm represents the input proteins and the consensus as sequences
of triples of coordinates of the alpha-carbon (or Cα) atoms along the backbone.
It then computes a correspondence between the coordinate triples of the Cα

atoms in the different protein structures, by choosing one of the proteins as the
initial consensus and applying an algorithm that is analogous to the center-star
method for multiple sequence alignment [7]. Next, it derives a set of translation
and rotation matrices that are optimal for the computed correspondence and
uses these to align the structures in space via rigid motions and obtain the new
consensus. The process is repeated until the change in SC-distance is less than a
prescribed threshold. The computation of the optimal translations and rotations
and the new consensus is itself an iterative process that both uses the current
consensus and generates simultaneously a new one. A distinguishing feature of
our algorithm is that it works directly with the coordinate representation in three
dimensions with no loss of spatial information, unlike some other multiple struc-
ture alignment algorithms that operate on sets of backbone vectors translated
to the origin; hence, the algorithm is able to generate true alignments.

As discussed in Section 1.2 below, there are many algorithms for multiple
structure alignment. In general, it is difficult to make comparisons among them
as they all operate under different sets of assumptions and problem formulations.
Nonetheless, we have been able to compare our algorithm to one recent algo-
rithm, called CE-MC [6], which also works with coordinate triples, but employs
a different objective function. As discussed in Section 4, the two algorithms are
very comparable in terms of the sizes of the so-called conserved regions they
discover in several datasets drawn from a well-known database called HOM-
STRAD [11]; however, our algorithm runs about two orders of magnitude faster
than CE-MC, hence it can potentially scale to much larger datasets.

Multiple Structure Alignment and Consensus Identification 117

We have also incorporated our algorithm into a web-based tool to facilitate
remote access and experimentation via the Internet.

Due to space constraints, we omit several details and proofs here. These can
be found in the full paper [19].

1.2 Related Work

Some prior work on multiple structure alignment includes [3,4,6,10,12,20]. Orengo
and Taylor [12] give algorithms for aligning pairs of proteins using a 2-level dy-
namic programming approach, and obtain a multiple alignment from this by align-
ing the pairs according to their similarity scores. Leibowitz et al. [10] use the tech-
nique of geometric hashing to compute a multiple alignment and core; unlike most
other algorithms, theirs does not require an ordered sequence of atoms along the
protein backbone. Gerstein and Levitt [4] use an iterative dynamic programming
method to compute a multiple structure alignment. The CE-MC algorithm by
Guda et al. [6], mentioned earlier, uses Monte Carlo optimization techniques to
refine an initial alignment found by pairwise structure alignment using the Com-
binatorial Extension algorithm in [15]. Recently, Chew and Kedem [3] and Ye and
Janardan [20] have shown how to compute both a multiple structure alignment
and a consensus structure. In [3,20], proteins are represented as sets of unit vec-
tors at the origin. An iterative, dynamic programming-based method is used to
compute the alignment and consensus. However, a limitation of the algorithms
in [3,20], is that they require the backbone vectors to be translated to the origin,
hence information about the relative positions of the Cα atoms in �3 is lost. As a
result, it is not possible to generate a true alignment. By contrast, the algorithm
proposed in this paper retains spatial information by representing each protein as
a sequence of coordinate triples in �3 and is able to generate a true alignment.

An important special case of multiple structure alignment is pairwise struc-
ture alignment, which involves aligning only two protein structures. Indeed, the
problem arises in this paper when computing correspondences between different
proteins. We use here a variant of an algorithm that we have developed recently
for pairwise structure alignment [18]. Some other algorithms for pairwise align-
ment that may also be used (with minor modifications) include LOCK [16],
DALI [8], CE [15], and the method in [2].

2 Multiple Structure Alignment: Problem Formulation

Let S = {Pi}K
i=1 be a set of K proteins. Protein Pi, of length Li, consists of

a chain of Cα atoms, numbered 1, 2, · · · ,Li, along the backbone in �3. (As is
customary [8,16], we consider only the backbone, not the amino acid residues.)
We represent Pi as a sequence of coordinate triples ui

j = (xi
j , y

i
j , z

i
j), 1 ≤ j ≤ Li,

on the backbone, where xi
j , yi

j , and zi
j , are the coordinates of the jth Cα atom

of Pi. Let P0 = u0
1, · · · ,u0

L0
be the consensus structure, of length L0.

A correspondence, C, of the K proteins {Pi}K
i=1 and the consensus struc-

ture P0 can be represented as a matrix H = (hij)0≤i≤K,1≤j≤L, for some

118 J. Ye et al.

L ≥ max0≤i≤K{Li}, where hij is either a coordinate triple belonging to the
ith protein, i ≥ 0, or a gap1. Distances between coordinate triples are based on
the squared Euclidean distance between them in �3. The distance between a
coordinate triple and a gap is called a gap penalty, and is denoted by ρ.

A multiple structure alignment, M, of the K proteins based on the correspon-
dence C, can be represented as another matrix G = (gij)0≤i≤K,1≤j≤L, where the
ith row, for i > 0, is obtained via transformation (i.e., rotation and translation)
of the corresponding row of H. More specifically, we combine {hij}L

j=1 from the
ith protein, i.e., the ith row of the matrix H, into a column vector Hi ∈ �L×3

as below. Gi is defined similarly from the matrix G.

Hi =

⎛⎜⎝ hi1

...
hiL

⎞⎟⎠ ∈ �L×3 and Gi =

⎛⎜⎝ gi1

...
giL

⎞⎟⎠ ∈ �L×3, for i = 1, · · · ,K.

Then, Gi = (Hi − Ti) · Ri = (Hi − e · ti) · Ri, for i > 0, where Ri ∈ �3×3 is
the rotation matrix, e ∈ �L×1 is a vector with 1 in each entry, ti ∈ �1×3 is a
translation vector, and Ti = e · ti ∈ �L×3 is the translation matrix. The trans-
formation of a gap is chosen to remain a gap. Note that P0 remains unchanged;
that is, G0 = H0.

Under the multiple structure alignment M, we define the distance between
the consensus structure P0 and protein Pj as DM(P0, Pj) =

∑L

=1 d(g0
, gj
)2,

where d(·, ·) denotes the following distance function:

d(u,v) =

⎧⎨⎩ ||u− v||2, if both u and v are coordinate triples.
ρ, if only one of u and v is a coordinate triple vector.
0, if both u and v are gap vectors.

The distance between P0 and Pj can be represented compactly as DM(P0, Pj) =
||G0 − Gj ||2F , where || · ||F denotes the Frobenius norm [5], with the additional
convention that the squared difference between a coordinate triple and a gap is
ρ2. The total distance of the K proteins to the consensus structure under M,
called the Sum-of-Consensus distance, or SC-distance, is then defined as

SC(M) =
∑

1≤j≤K

DM(P0, Pj) =
∑

1≤j≤K

||G0 −Gj ||2F . (1)

Intuitively, the SC-distance measures how well the consensus structure represents
the given set of K proteins. A similar distance function is used in [3], where each
protein is represented as a set of vectors in �4.

Note that Gi = (Hi−Ti)·Ri, for some rotation and translation matrices Ri and
Ti. We can now define our multiple structure alignment problem as follows: Given
a set S = {P1, · · · , PK} of protein structures, compute a transformation (i.e.,
rotation and translation) for each protein, and generate a consensus structure

1 In our implementation, a gap is represented by a special symbol.

Multiple Structure Alignment and Consensus Identification 119

P0, such that the resulting multiple structure alignment, M, has minimum SC-
distance, SC(M), as defined in Equation (1).

In Section 3, we present a heuristic for this problem which approximates the
global minimum of the SC-distance, SC(M), by iterative refinement of an initial
multiple structure alignment and converges to a local minimum.

3 Multiple Structure Alignment: The Algorithm

Our algorithm works iteratively, by starting with an initial multiple structure
alignment and updating it incrementally with decreasing SC-distance. The algo-
rithm finally stops at some local minimum. The expectation is that with a good
starting alignment, the final alignment will be close to the optimal solution. The
pseudo-code for the algorithm is given as Algorithm MAPSCI, which stands
for Multiple Alignment of Protein Structures and Consensus Identification. The
various steps are discussed in detail below.

Algorithm MAPSCI: Multiple Alignment of Protein Structures
and Consensus Identification

1. Choose initial consensus structure P 0
0 from {Pi}K

i=1. i ← 0. SC0 ← ∞.
2. Do
3. if i = 0 then compute pairwise structure alignment between P i

0 and
every Pj .

4. else use standard dynamic programming to align P i
0 with every Pj .

5. i ← i + 1.
6. Compute correspondence Ci from the above alignments (either

pairwise or dynamic programming) using center-star-like method.
7. Compute optimal translation matrix T i

j and optimal rotation
matrix Ri

j iteratively, as in Section 3.4. Transform Pj by Ri
j and T i

j

for every j to obtain multiple structure alignment Mi. SCi ← SC(Mi).
8. Post-process Mi by removing all columns consisting of only gaps.
9. Compute new consensus structure P i

0 from Mi by Theorem 1.

10. Until SCi−SCi−1

SCi−1 ≤ η. // η is a user-specified threshold

3.1 Step I (Line 1): Choose the Initial Consensus Structure

There are many ways to choose the initial consensus structure P 0
0 . One possi-

bility is to choose P 0
0 as the center protein, so that it minimizes the sum of the

minimum pairwise distances to all the other proteins. That is, P 0
0 is the k�th

protein, where k� = arg min1≤k≤K

∑K
i=1 D(Pk, Pi), and D(Pk, Pi) denotes the

distance between Pk and Pi, as computed by a pairwise structure alignment.
This choice makes sense intuitively, since it yields a consensus structure which

is “not too far away” from the others; however it is expensive computationally,
as it involves K(K−1)

2 pairwise alignments. A simple and less expensive choice
that appears to work well is to pick P 0

0 as the median protein, i.e., the protein of
median length. We report our experimental results for both choices in Section 4.

120 J. Ye et al.

3.2 Step II (Lines 3 and 4): Pairwise Structure Alignment

After we determine the consensus structure P 0
0 in Step I, the K − 1 pairwise

structure alignments between P 0
0 and Pi �= P 0

0 , for i = 1, · · · ,K, are computed
using the pairwise structure alignment algorithm in [18]. (Other pairwise struc-
ture alignment algorithms, such as LOCK [16], DALI [8], CE [15], etc. could also
be used instead.) After the initial step, the consensus structure is expected to be
close to the proteins in the dataset. Dynamic programming on the coordinates
of the Cα atoms is then applied to compute the alignment (see Line 4).

3.3 Step III (Line 6): Compute an Initial Correspondence

An initial correspondence between the K proteins is obtained by applying to the
consensus structure and the pairwise alignments computed in Steps I and II a
method adapted from the center-star method [7] for multiple sequence alignment.
We call our extension of this method to protein structures a center-star-like
method. There are two key differences between the two methods. First, in the
center-star-like method we will be aligning not alphabet characters representing
amino acids but coordinate triples derived from the protein backbones. Second,
in a multiple structure alignment, the correspondence computed using the center-
star-like method is only a first step; it is followed by an optimization step to
compute the optimal transformation matrices. Subsequent correspondences are
computed similarly.

3.4 Step IV (Lines 7 and 9): Compute Optimal Rotation and
Translation Matrices and Consensus Structure

Given a correspondence C and a consensus structure J , we show how to find
both the optimal rotation matrix Rj and translation matrix Tj for each protein
Pj as well as the new consensus structure J̄ .

Assume the correspondence C is represented as a matrix H = (hij). Protein Pj

in C can be represented as Hj consisting of {hji}L
i=1, where hji represents either

a coordinate triple or a gap. The objective is to find the rotation and translation
matrices Rj and Tj , for j = 1, · · · ,K, and the consensus structure J̄ , such that
sum of the pairwise alignment distances between J̄ and each (transformed) Pj

is minimum.
Mathematically, given Hj , for j = 1, · · · ,K, we wish to compute optimal rota-

tion and translation matrices Rj and Tj , for each protein Pj , and the consensus
structure J̄ , such that S =

∑K
j=1 ||J̄ − (Hj − Tj) ·Rj ||2F is minimized.

Direct minimization of S over J̄ , and the Tj ’s and Rj ’s seems difficult. Instead,
we propose an iterative procedure for minimizing S. Within each iteration, the
minimization of S is carried out in two stages that are interleaved: computation
of the optimal J̄ for given Rj ’s and Tj ’s; and computation of the optimal Rj ’s
and Tj ’s for a given J̄ .

First, we show how to compute the consensus structure, given the rotation
and translation matrices Rj ’s and Tj ’s, as stated in the following theorem:

Multiple Structure Alignment and Consensus Identification 121

Theorem 1. Assume that the correspondence C is represented as a matrix H =
(hij) and J̄ = (J1, · · · ,JL)T is the optimal consensus structure. For each column
j, let In be the set of indices of proteins with a non-gap in the jth column and
Ig be the set of indices of proteins with a gap in the jth column. Then J̄j, the
jth position of the optimal consensus structure, is either a coordinate triple uj,
where uj = 1

|In|
∑

i∈In
hij, or a gap.

Next, we show how to compute the optimal translation matrix Ti, for each i,
for a given consensus structure J̄ . From the equation above for S, it is clear
that the optimal Ti and Tj , for i �= j are independent of each other. Hence, we
focus on the computation of Ti, for a specific i. The translation matrix Ti can
be decomposed as Ti = e× ti, where ti ∈ �1×3 is the translation vector.

As mentioned earlier, the transformation of a gap remains a gap. Hence the
computation of the translation and rotation matrices is independent of the mis-
matches (i.e., where at least one of the two elements being compared is a gap).
We can thus simplify the computation by removing all mismatches in the align-
ment between the consensus structure J̄ and the ith protein Pi. Let A ∈ �n×3

and B ∈ �n×3 consist of the coordinate triples from the consensus structure
and the ith protein, respectively, after removing the mismatches. Here n is the
number of matches between the consensus structure and the ith protein (i.e.,
comparison of two non-gaps).

The optimal rotation matrix can be obtained by computing the Singular Value
Decomposition (SVD) [5] of AT B as in [17], while it is known that the optimal
translation vector is the one that matches the centroids of the coordinate triple
vectors from A and B as follows:

Theorem 2. Let A and B be defined as above. Assume that eT A = [0, 0, 0].
Then for any rotation matrix Ri, the optimal translation vector ti for minimizing
Si = ||A− (B − Ti) ·Ri||2F = ||A− (B − e · ti) ·Ri||2F is given by ti = 1

neT B.

3.5 Analysis

We show in the full paper [19] that, in Algorithm MAPSCI, the SC-distance is
non-increasing from one iteration to the next and the algorithm thus converges.

Let � be the maximum length of the K proteins, m1 the number of iterations
in computing the optimal rotation and translation matrices, and m2 the number
of iterations of the loop in lines 2–10. The time complexity of the algorithm can
be shown to be either O(K2�2+(K�2+K2�m1)m2) or O(K+(K�2+K2�m1)m2),
depending on the choice of the initial consensus. In practice, m1 and m2 tend
to be small constants, so the running time is either O(K2�2) or O(K�2 + K2�).

4 Experimental Results

4.1 Software and Web Server

Algorithm MAPSCI has been implemented in C, and has been tested on
several protein structure datasets, as described below. Moreover, it has been

122 J. Ye et al.

incorporated into a web-based tool (also called MAPSCI) for remote access
over the Internet. This tool allows proteins to be specified by their PDB ids (or
uploaded from local files). The results of the alignment are annotated in the
JOY output format and the standard NBRF/PIR format, and can be visualized
using the molecular viewer applet Chemis 3D integrated with the web tool. The
software and the web-based tool can be accessed at www.geom-comp.umn.edu .

4.2 Datasets

We evaluated our algorithm using the seventeen datasets shown in Table 1. The
ten proteins in Set 1 are from the Globin family, while the ten proteins in Set 2
are from the Thioredoxin family. Set 3 contains four all-alpha proteins, which
are structural neighbors of the protein 1mbc (Myoglobin) from the DALI data-
base. The four alpha-beta proteins in Set 4 are all structural neighbors of the
protein 3trx (Thioredoxin-Reduced Form) from the DALI database. Sets 5–7 are
from [3]: Set 5 contains sixteen proteins from the Globin family, Set 6 contains six
all-beta proteins from the immunoglobulin family, and Set 7 contains five proteins
that are unrelated. Sets 8–17 are from the HOMSTRAD database [11]. HOM-
STRAD (HOMologous STRucture Alignment Database) is a curated database of
structure-based alignments for homologous protein families. Datasets 8–17 have
sequence identities ranging from 17% to 47%.

Table 1. The test datasets used for the experiments

Dataset Proteins (PDB ID)

1 Globin 1mbc, 1mba, 1dm1, 1hlm, 2lhb, 2fal, 1hbg, 1flp, 1eca, 1ash
2 Thioredoxin 3trx, 1aiu, 1erv, 1f9mA, 1ep7A, 1tof, 2tir, 1thx, 1quw, 1fo5A
3 all-alpha 1le2, 2fha, 1nfn, 1grj
4 Alpha-beta 1mek, 1a8l, 1f37B, 1ghhA
5 Globin 1hlb, 1hlm, 1babA, 1babB, 1ithA, 1mba, 2hbg, 2lhb

3sdhA, 1ash, 1flp, 1myt, 1eca, 1lh2, 2vhbA, 5mbn
6 all-beta 1cd8, 1ci5A, 1qa9A, 1cdb, 1neu, 1qfoA
7 mixed 1cnpB, 1jhgA, 1hnf, 1aa9, 1eca

8 biotin lipoyl 1bdo, 1lac, 1ghk,1iyv, 1pmr, 1qjoA, 1fyc
9 msb 1esl, 1rdol, 1msbA, 1tn3, 2afp, 1qddA, 1ixxA, 1ixxB
10 cyt3 2cdv, 2cym, 1wad, 3cyr, 2cy3, 1aqe
11 ghf7 1celA, 1eg1A, 2ovwA, 2a39A
12 Acetyltransf 1bo4A, 1cm0A, 1yghA, 1qstA, 1b87A, 1cjwA
13 HMG bo 1hrzA, 1nhn, 1cktA, 1hma, 2lefA
14 intb 1afcA, 2afgA, 2fgf, 2mib, 1i1b, 1iraX
15 lipocalin 1i4uA, 1bbpA, 1exsA, 1bebA, 2a2uA, 1jv4A, 1ew3A, 1bj7,

1e5pA, 1hn2, 1dzkA, 1iiuA, 1aqb, 1epaA, 1qqsA
16 sh3 1awj, 1shg, 1shfA, 2src, 1qcfA, 1lckA, 1qlyA, 1bbzA,

1griA, 1gbrA, 1cskA, 1ckaA, 1semA, 1griA, 1ycsB, 2hsp,
1ark, 1aojA, 1pht, 1bb9

17 TPR 1a17, 1elwA, 1elrA, 1e96B, 1fchA, 1ihgA

4.3 Results

Our first experiment compared two choices for the initial consensus: “center”
and “median”. The results for the seventeen datasets are illustrated in Figure 1,
where the x-axis denotes the different datasets and the y-axis denotes the SC-
distance (left) and the running time (right). Throughout our experiments, we

Multiple Structure Alignment and Consensus Identification 123

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
C

-d
is

ta
nc

e

Datasets

center
median

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
im

e
(S

ec
)

Datasets

center
median

Fig. 1. Comparison of choices of initial consensus structure: “center” and “median,”
using the seventeen datasets. Time measurements made on a 500MHz Sun-Sparc with
512MB memory.

used η = 0.1 and ρ = 16. (Recall that η is a user-specified threshold for
convergence—see line 10 of Algorithm MAPSCI; ρ is the gap penalty.)

As seen from the figure, the “center” method produced SC-distances that were
slightly lower than those produced by “median” (except for Set 5). However, the
computational cost of “center” is much higher than that of “median”.

Our second experiment was to visualize the multiple structure alignments. An
example for Set 2 is shown in Figure 2, for the two choices of the initial consensus,
together with the computed final consensus. In each case, the computed consen-
sus is seen to be visually quite similar to the input proteins. (Color versions of
all the figures may be accessed at www.geom-comp.umn.edu .)

Our third experiment compared our method with CE-MC [6], using the
manually-aligned HOMSTRAD database as the “gold” standard. Only conserved

−15
−10

−5
0

5
10

15

−20

−10

0

10

20
−15

−10

−5

0

5

10

15

20

25

3trx
1aiu
1erv
1f9mA
1ep7A
1tof
2tir

−15
−10

−5
0

5
10

15

−20

−10

0

10

20
−15

−10

−5

0

5

10

15

20

25

Consensus

−10

0

10

20

30

25

30

35

40

45

50

55
−25

−20

−15

−10

−5

0

5

10

15

3trx
1aiu
1erv
1f9mA
1ep7A
1tof
2tir

−10

0

10

20

30

25

30

35

40

45

50

55
−25

−20

−15

−10

−5

0

5

10

15

Consensus

Fig. 2. Multiple structure alignment using dataset 2, with two choices for the initial
consensus: “center” (top; SC-distance: 2783.47), and “median” (bottom; SC-distance:
2814.20). To avoid clutter, only the first seven proteins from the dataset are displayed.

124 J. Ye et al.

columns (i.e., ones with no gaps) were considered for the comparison, as they
are viewed to be more important biologically. We ran our algorithm and CE-MC
on the ten datasets, Sets 8–17, from HOMSTRAD and reported the percentage
of conserved columns from HOMSTRAD that also appeared in the alignments
from these two algorithms. See Figure 3(a). Overall, our algorithm is seen to be
quite competitive with CE-MC, in terms of the sizes of the conserved regions.
Figure 3(b) shows the running times for both algorithms on a log scale, i.e.,
ln(1 + t) is plotted for each t. The running time of our algorithm is seen to be
much smaller (about two orders of magnitude) than that of CE-MC, implying
that it can potentially scale to much larger datasets than can CE-MC.

8 9 10 11 12 13 14 15 16 17
0

10

20

30

40

50

60

70

80

90

100

Datasets

P
er

ce
nt

 c
on

se
rv

ed

Our algorithm
CE−MC

0

1

2

3

4

5

6

8 9 10 11 12 13 14 15 16 17

T
im

e
(S

ec
),

 o
n

lo
g

sc
al

e

Datasets

Our algorithm
CE-MC

(a) (b)

Fig. 3. Comparison of our algorithm and CE-MC on the ten datasets from HOM-
STRAD: the percentage conserved (graph (a)), and the computational time (graph (b)),
on a log scale. Time measurements made on a 500MHz Sun-Sparc with 512MB memory.

References

1. C. Branden, and J. Tooze. Introduction to Protein Structure, Garland, 1999.

2. L.P. Chew, K. Kedem, D.P. Huttenlocher, and J. Kleinberg. Fast detection of
geometric substructure in proteins. J. Comput. Bio., 6:(3-4), 1999, 313–325.

3. L.P. Chew and K. Kedem. Finding the consensus shape of a protein family. Proc.
ACM Symp. Comput. Geometry SoCG’02, 64–73, 2002.

4. M. Gerstein and M. Levitt. Using iterative dynamic programming to obtain accu-
rate pairwise and multiple alignments of protein structures. Proc. ISMB’96, 59–
66, 1996.

5. G.H. Golub and C.F. Van Loan. Matrix Computations, John Hopkins University
Press, 3rd edition, 1996.

6. C. Guda, E.D. Scheeff, P.E. Bourne, I.N. Shindyalov. A new algorithm for the
alignment of multiple protein structures using Monte Carlo optimization. Proc.
PSB’01, 275–286, 2001.

7. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology, Cambridge University Press, 1997.

8. L. Holm and C. Sander. Protein Structure Comparison by Alignment of Distance
Matrices. J. Mol. Bio., 233, 1993, 123–138.

9. L. Holm and C. Sander. Mapping the protein universe. Science, 273, 1996, 595–602.

Multiple Structure Alignment and Consensus Identification 125

10. N. Leibowitz, Z. Fligelman, R. Nussinov, and H. Wolfson: Multiple Structural
Alignment and Core Detection by Geometric Hashing. Proc. ISMB’99, 169–
177, 1999.

11. K. Mizuguchi, C.M. Deane, T.L. Blundell, J.P. Overington. HOMSTRAD: a data-
base of protein structure alignments for homologous families. Prot. Sci., 7, 1998,
2469–2471.

12. C. Orengo and W. Taylor. SSAP: Sequential structure alignment program for pro-
tein structure comparison. Meth. Enzymol., 266, 1996, 617–635.

13. G. Rose. No assembly required. The Sciences, 36, 1996, 26–31.
14. M. Sela, F. H. White Jr, and C. B. Anfinsen. Reductive cleavage of disulfide bridges

in Ribonuclease. Science, 125, 1957, 691-692.
15. I.N. Shindyalov and P.E. Bourne. Protein structure alignment by incremental com-

binatorial extension (CE) of the optimal path. Prot. Eng., 11, 1998, 739–747.
16. A.P. Singh and D.L. Brutlag. Hierarchical protein structure superposition using

both secondary structure and atomic representation. Proc. ISMB’97, 284–293,
1997.

17. S. Umeyama. Least-square estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell., 13 (4), 1991, 376–380.

18. J. Ye, R. Janardan, and S. Liu. Pairwise protein structure alignment based on
an orientation-independent backbone representation. J. Bio. Comput. Bio., 2 (4),
2004, 699–717.

19. J. Ye, I. Ilinkin, R. Janardan, and A. Isom. Multiple structure align-
ment and consensus identification for proteins. Submitted. Available at
www.geom-comp.umn.edu.

20. J. Ye, R. Janardan. Approximate multiple protein structure alignment using the
Sum-of-Pairs distance. J. Comput. Bio., 11 (5), 2004, 986–1000.

Procrastination Leads to Efficient Filtration for

Local Multiple Alignment

Aaron E. Darling1, Todd J. Treangen2, Louxin Zhang4, Carla Kuiken5,
Xavier Messeguer2, and Nicole T. Perna3

1 Department of Computer Science, University of Wisconsin, USA
darling@cs.wisc.edu

2 Department of Computer Science, Technical University of Catalonia,
Barcelona, Spain

treangen@lsi.upc.edu
3 Department of Animal Health and Biomedical Sciences, Genome Center,

University of Wisconsin, USA
4 Department of Mathematics, National University of Singapore, Singapore
5 T-10 Theoretical Biology Division, Los Alamos National Laboratory, USA

Abstract. We describe an efficient local multiple alignment filtration
heuristic for identification of conserved regions in one or more DNA se-
quences. The method incorporates several novel ideas: (1) palindromic
spaced seed patterns to match both DNA strands simultaneously, (2)
seed extension (chaining) in order of decreasing multiplicity, and (3)
procrastination when low multiplicity matches are encountered. The re-
sulting local multiple alignments may have nucleotide substitutions and
internal gaps as large as w characters in any occurrence of the motif. The
algorithm consumes O(wN) memory and O(wN log wN) time where N
is the sequence length. We score the significance of multiple alignments
using entropy-based motif scoring methods. We demonstrate the per-
formance of our filtration method on Alu-repeat rich segments of the
human genome and a large set of Hepatitis C virus genomes. The GPL
implementation of our algorithm in C++ is called procrastAligner and
is freely available from http://gel.ahabs.wisc.edu/procrastination

1 Introduction

Pairwise local sequence alignment has a long and fruitful history in computa-
tional biology and new approaches continue to be proposed [1,2,3,4]. Advanced
filtration methods based on spaced-seeds have greatly improved the sensitiv-
ity, specificity, and efficiency of many local alignment methods [5,6,7,8,9]. Com-
mon applications of local alignment can range from orthology mapping [10] to
genome assembly [11] to information engineering tasks such as data compres-
sion [12]. Recent advances in sequence data acquisition technology [13] provide
low-cost sequencing and will continue to fuel the growth of molecular sequence
databases. To cope with advances in data volume, corresponding advances in
computational methods are necessary; thus we present an efficient method for
local multiple alignment of DNA sequence.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 126–137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Procrastination Leads to Efficient Filtration for Local Multiple Alignment 127

Unlike pairwise alignment, local multiple alignment constructs a single multi-
ple alignment for all occurrences of a motif in one or more sequences. The motif
occurrences may be identical or have degeneracy in the form of mismatches and
indels. As such, local multiple alignments identify the basic repeating units in one
or more sequences and can serve as a basis for downstream analysis tasks such as
multiple genome alignment [14,15,16,17], global alignment with repeats [18,19],
or repeat classification and analysis [20]. Local multiple alignment differs from
traditional pairwise methods for repeat analysis which either identify repeat
families de novo [21] or using a database of known repeat motifs [22].

Previous work on local multiple alignment includes an Eulerian path approach
proposed by Zhang and Waterman [23]. Their method uses a de Bruijn graph
based on exactly matching k-mers as a filtration heuristic. Our method can be
seen as a generalization of the de Bruijn filtration to arbitrary spaced seeds
or seed families. However, our method employs a different approach to seed
extension that can identify long, low-copy number repeats.

The local multiple alignment filtration method we present has been designed
to efficiently process large amounts of sequence data. It is not designed to de-
tect subtle motifs such as transcription factor binding sites in small, targeted
sequence regions–stochastic methods are better suited for such tasks [24].

2 Overview of the Method

Our local multiple alignment filtration method begins by generating a set of can-
didate multi-matches using palindromic spaced seed patterns, listed in Table 1.
The seed pattern is evaluated at every position of the input sequence, and the
lexicographically-lesser of the forward and reverse complement subsequence in-
duced by the seed pattern is hashed to identify seed matches—see Figure 1. The
use of palindromic seed patterns offers computational savings by allowing both
strands of DNA to be processed simultaneously.

Given an initial set of matching sequence regions, our algorithm then max-
imally extends each match to cover the entire surrounding region of sequence
identity. A visual example of maximal extension is given by the black match

ACAGCTAGCATGGCAA...GTTACCTAG
1*1*1

1 AAC
 2 ACG
 3 ACA
 4 CAC
 5 CAC
 6 TCA
 7 ACT

Step 1. Apply seed pattern at each position
to extract either the forward or reverse seed

8 CTC
 9 CAG
 10 AGC
 11 TCA
 12 GCA
 ...

 ...
 N-9 GAC
 N-8 GTA
 N-7 AGA
 N-6 ACA
 N-5 CAG

 1 AAC
 3 ACA
N-6 ACA
 2 ACG
 7 ACT
N-7 AGA
 10 AGC
 4 CAC
 5 CAC

Step 2. Hash seeds to identify
matches of two or more seeds

 9 CAG
N-5 CAG
 8 CTC
 12 GCA
N-9 GAC
N-8 GTA
 6 TCA
 11 TCA

}

} }

}

Fig. 1. Application of the palindromic seed pattern 1*1*1 to identify degenerate match-
ing subsequences in a nucleotide sequence of length N . The lexicographically-lesser of
the forward and reverse complement subsequence induced by the seed pattern is used
at each sequence position.

128 A.E. Darling et al.

Table 1. Palindromic spaced seeds used by procrastAligner. The sensitivity ranking
of a seed at various levels of sequence identity is given in the columns at right. A seed
with rank 1 is the most sensitive seed pattern for a given weight and percent sequence
identity. The default seeds used by procrastAligner are listed here, while the full list
of high-ranking seeds appears on the website.

Weight Pattern Seed Rank by Sequence Identity
65% 70% 75% 80% 85% 90%

5 11*1*11 1 1 1 1 1 1

6 1*11***11*1 1 1 1 1 1 1

7 11**1*1*1**11 1 1 1 1 1 1

8 111**1**1**111 1 1 1 1 1 1

9 111*1**1**1*111 1 1 1 1 1 1

10 111*1**1*1**1*111 1 1 1 1 1 1

11 1111**1*1*1**1111 1 1 1 1 1 2

12 1111**1*1*1*1**1111 5 3 1 1 1 1

13 1111**1**1*1*1**1**1111 > 10 5 1 1 1 1

14 1111**11*1*1*11**1111 2 2 1 1 1 1

15 1111*1*11**1**11*1*1111 1 1 1 1 1 1

16 1111*1*11**11**11*1*1111 2 1 1 1 1 1

18 11111**11*1*11*1*11**11111 1 1 1 1 1 1

19 1111*111**1*111*1**111*1111 5 2 1 1 1 1

20 11111*1*11**11*11**11*1*11111 > 10 > 10 3 1 1 1

21 11111*111*11*1*11*111*11111 1 1 1 3 3 2

in Figure 2. In order to extend over each region of sequence O(1) times, our
method extends matches in order of decreasing multiplicity–we extend the high-
est multiplicity matches first. When a match can no longer be extended without
including a gap larger than w characters, our method identifies the neighboring
subset matches within w characters, i.e., the light gray seed in Figure 2. We
then link each neighboring subset match to the extended match. We refer to the

Fig. 2. Seed match extension. Three seed matches are depicted as black, gray, and light
gray regions of the sequence. Black and gray have multiplicity 3, while light gray has
multiplicity 2. We maximally extend the black seed to the left and right and in doing
so, the black seed chains with the gray seed to the left. The light gray seed is adjacent
to only two out of three components in the extended black seed. We procrastinate and
extend the light gray seed later. We create a link between light gray and the extended
black seed match.

Procrastination Leads to Efficient Filtration for Local Multiple Alignment 129

extended match as a superset match. Rather than immediately extend the sub-
set match(es), we procrastinate and extend the subset match later when it has
the highest multiplicity of any match waiting to be extended. When extending
a match with a linked superset (light gray in Figure 2), we immediately include
the entire region covered by the linked superset match–obviating the need to
re-examine sequence already covered by a previous match extension.

We score alignments generated by our method using the entropy equation
and exact p-value method in [25]. Our method may produce many hundreds or
thousands of local multiple alignments for a given genome sequence, thus it is
important to rank them by significance. When computing column entropy, we
treat gap characters as missing data.

3 Algorithm

3.1 Notation and Assumptions

Given a sequence S = s1, s2, . . . , sN of length N defined over an alphabet
{A, C, G, T}, our goal is to identify local multiple alignments on subsequences of
S. Our filtration method first generates candidate chains of ungapped align-
ments, which are later scored and possibly re-aligned. Denote an ungapped
alignment, or match, among subsequences in S as an object M . We assume
as input a set of ungapped alignments M. We refer the number of regions in
S matched by a given match Mi ∈ M as the multiplicity of Mi, denoted as
|Mi|. We refer to each matching region of Mi as a component of Mi. Note that
|Mi| ≥ 2 ∀ M ∈ M. We denote the left-end coordinates in S of each compo-
nent of Mi as Mi.L1, Mi.L2, . . . , Mi.L|Mi|, and similarly we denote the right-end
coordinates as Mi.Rx. When aligning DNA sequences, matches may occur on
the forward or reverse complement strands. To account for this phenomenon we
add an orientation value to each matching region: Mi.Ox ∈ {1,−1}, where 1
indicates a forward strand match and -1 for reverse.

Our algorithm has an important limitation on the matches in M: no two
matches Mi and Mj may have the same left-end coordinate, e.g. Mi.Lx �=
Mj.Ly ∀ i, j, x, y except for the identity case when i = j and x = y. This
constraint has been referred to by others as consistency and transitivity [26]
of matches. In the present work we only require consistency and transitivity of
matches longer than the seed length, e.g. seed matches may overlap.

3.2 Data Structures

Our algorithm begins with an initialization phase that creates three data struc-
tures. The first data structure is a set of Match Records for each match M ∈M.
The Match Record stores M , a unique identifier for M , and two items which
will be described later in Section 3.3: a set of linked match records, and a sub-
suming match pointer. The linked match records are further subdivided into four
classes: a left and right superset link, and left and right subset links. The subsum-
ing match pointer is initially set to a NULL value. Figure 3 shows a schematic

130 A.E. Darling et al.

[[w [w

[w[w [w

M₁

M₂

Match Record List

...4

3

3

2

Procrastination Queue

Left Links Right Links
Subset Superset Subset Superset

null null null null

Subsuming match pointer:

1 2 3 34 14 1 2 3 1 2 [w

1 2 3 34 14 1 2 3 1 2

1 2 3 34 14 1 2 3 1 2

[w [w [w [w

1 2 3 344 1 2 3 1 2 1

1 2 3 31 2 3 1 2

(A)

(B)

(C)

(D)

1 1 1 1

1 1 1 1

2 2 2

3 3 3

4 4

Resulting local multiple alignment chain:

M₁.L₁ M₁.L₂ M₁.L₃ M₁.L₄

M₁.R₁ M₁.R₂ M₁.R₃ M₁.R₄

M₂.L₁ M₂.L₂ M₂.L₃

M₂.R₁ M₂.R₂ M₂.R₃

null

M₃

M₄

...

Fig. 3. The match extension process and associated data structures. (A) First we
pop the match at the front of the procrastination queue: M1 and begin its leftward
extension. Starting with the leftmost position of M1, we use the Match Position
Lookup Table to enumerate every match with a left-end within some distance w. Only
M4.L1 is within w of M1, so it forms a singleton neighborhood group which we discard.
(B) M1 has no neighborhood groups to the left, so we begin extending M1 to the right.
We enumerate all matches within w to the right of M1. M2 lies to the right of 3 of 4
components of M1 and so is not subsumed, but instead gets linked as a right-subset
of M1. We add a left-superset link from M2 to M1. (C) Once finished with M1 we
pop M2 from the front of the procrastination queue and begin leftward extension. We
find the left-superset link from M2 to M1, so we extend the left-end coordinates of
M2 to cover M1 accordingly. No further leftward extension of M2 is possible because
M1 has no left-subset links. (D) Beginning rightward extension on M2 we construct a
neighborhood list and find a chainable match M3, and a subset M4. We extend M2 to
include M3 and mark M4 as inconsistent and hence not extendable. Upon completion
of the chaining process we have generated a list of local multiple alignments.

of the match record. We refer to the second data structure as a Match Position
Lookup Table, or P. The table has N entries p1, p2, . . . , pN , one per character of
S. The entry for pt stores the unique identifier of the match Mi and x for which
Mi.Lx = t or the NULL identifier if no match has t as a left-end coordinate. We
call the third data structure a Match extension procrastination queue, or simply
the procrastination queue. Again, we denote the multiplicity of a match M by
|M |. The procrastination queue is a binary heap of matches ordered on |M | with
higher values of |M | appearing near the top of the heap. The heap is initially
populated with all M ∈M. This queue dictates the order in which matches will
be considered for extension.

3.3 Extending Matches

Armed with the three aforementioned data structures, our algorithm begins the
chaining process with the match at the front of the procrastination queue. For a

Procrastination Leads to Efficient Filtration for Local Multiple Alignment 131

match Mi that has not been subsumed, the algorithm first attempts extension
to the left, then to the right. Extension in each direction is done separately in
an identical manner and we arbitrarily choose to describe leftward extension
first. The first step in leftward match extension for Mi is to check whether it
has a left superset link. If so, we perform a link extension as described later.
For extension of Mi without a superset link, we use the Match Position Lookup
Table P to enumerate all matches within a fixed distance w of Mi. For each
component x = 1, 2, . . . , |Mi| and distance d = 1, 2, . . . , w we evaluate first
whether pMi.Lx−(d·Mi.Ox) is not NULL. If not then pMi.Lx−(d·Mi.Ox) stores an
entry 〈Mj , y〉 which is a pointer to neighboring match Mj and the matching
component y of Mj .

In order to consider matches on both forward and reverse strands, we must
evaluate whether Mi.Ox and Mj .Oy are consistent with each other. We define the
relative orientation of Mi.Ox and Mj.Oy as oi,j,x,y = Mi.Ox ·Mj.Oy which causes
oi,j,x,y = 1 if both Mi.Ox and Mj .Oy match the same strand and −1 otherwise.
We create a tuple of the form 〈Mj , oi,j,x,y, x, d, y〉 and add it to a list called the
neighborhood list. In other words, the tuple stores (1) the unique match ID of
the match with a left-end at sequence coordinate Mi.Lx − (d ·Mi.Ox), (2) the
relative orientation of Mi.Ox and Mj .Oy, (3) the matching component x of Mi,
(4) the distance d between Mi and Mj, and (5) the matching component y of Mj .
If Mj = Mi for a given value of d, we stop adding neighborhood list entries after
processing that one. The neighborhood list is then scanned to identify groups of
entries with the same match ID Mj and relative orientation oi,j,x,y. We refer
to such groups as neighborhood groups. Entries in the same neighborhood group
that have identical x or y values are considered “ties” and need to be broken.
Ties are resolved by discarding the entry with the larger value of d in the fourth
tuple element: we prefer to chain over shorter distances. After tiebraking, each
neighborhood group falls into one of several categories:

– Superset: The neighborhood group contains |Mi| separate entries. Mj has
higher multiplicity than Mi, e.g. |Mj | > |Mi|. We refer to Mj as a superset
of Mi.

– Chainable: The neighborhood group contains |Mi| separate entries. Mj and
Mi have equal multiplicity, e.g. |Mj| = |Mi|. We can chain Mj and Mi.

– Subset: The neighborhood group contains |Mj| separate entries such that
|Mj | < |Mi|. We refer to Mj as a subset of Mi.

– Novel Subset: The neighborhood group contains r separate entries such
that r < |Mi| ∧ r < |Mj|. We refer to the portion of Mj in the list as a novel
subset of Mi and Mj because this combination of matching positions does
not exist as a match in the initial set of matches M.

The algorithm considers each neighborhood group for chaining in the order
given above: chainable, subset, and finally, novel subset. Superset groups are
ignored, as any superset links would have already been created when processing
the superset match.

132 A.E. Darling et al.

Chainable matches. To chain match Mi with chainable match Mj we first
update the left-end coordinates of Mi by assigning Mi.Lx ← min(Mi.Lx, Mj.Ly)
for each 〈i, j, x, y〉 in the neighborhood group entries. Similarly, we update the
right-end coordinates: Mi.Rx ← max(Mi.Rx, Mj.Ry) for each 〈i, j, x, y〉 in the
group. If any of the coordinates in Mi change we make note that a chainable
match has been chained. We then update the Match Record for Mj by setting
its subsuming match pointer to Mi, indicating that Mj is now invalid and is
subsumed by Mi. Any references to Mj in the Match Position Lookup Table
and elsewhere may be lazily updated to point to Mi as they are encountered.
If Mj has a left superset link, the link is inherited by Mi and any remaining
neighborhood groups with chainable matches are ignored. Chainable groups are
processed in order of increasing d value so that the nearest chainable match with
a superset link will be encountered first. A special case exists when Mi = Mj .
This occurs when Mi represents an inverted repeat within w nucleotides. We
never allow Mi to chain with itself.

Subset matches. We defer subset match processing until no more chainable
matches exist in the neighborhood of Mi. A subset match Mj is considered
to be completely contained by Mi when for all x, y pairs in the neighborhood
group, Mi.Lx ≤ Mj.Ly ∧Mj .Ry ≤Mi.Rx. When subset match Mj is completely
contained by Mi, we set the subsuming match pointer of Mj to Mi. If the subset
match is not contained we create a link from Mi to Mj. The subset link is a
tuple of the form 〈Mi, Mj, x1, x2, . . . , x|Mj |〉 where the variables x1 . . . x|Mj | are
the x values associated with the y = 1 . . . |Mj | from the neighborhood list group
entries. The link is added to the left subset links of Mi and we remove any
pre-existing right superset link in Mj and replace it with the new link.

Novel subset matches. A novel subset may only be formed when both Mi and
Mj have already been maximally extended, otherwise we discard any novel subset
matches. When a novel subset exists matches we create a new match record
Mnovel with left- and right-ends equal to the outward boundaries of Mi and Mj .
Rather than extend the novel subset match immediately, we procrastinate and
place the novel subset in the procrastination queue. Recall that the novel subset
match contains r matching components of Mi and Mj . In constructing Mnovel,
we create links between Mnovel and each of Mi and Mj such that Mnovel is a
left and a right subset of Mi and Mj, respectively. The links are tuples of the
form outlined in the previous section on subset matches.

Occasionally a neighborhood group representing a novel subset match may
have Mi = Mj. This can occur when Mi has two or more components that form
a tandem or overlapping repeat. If Mi.Lx has Mi.Ly in its neighborhood, and
Mi.Ly has Mi.Lz in its neighborhood, then we refer to {x, y, z} as a tandem
unit of Mi. A given tandem unit contains between one and |Mi| components of
Mi, and the set of tandem units forms a partition on the components of Mi. In
this situation we construct a novel subset match record with one component for
each tandem unit of Mi. If Mi has only a single tandem unit then we continue
without creating a novel subset match record. Figure 4 illustrates how we process
tandem repeats.

Procrastination Leads to Efficient Filtration for Local Multiple Alignment 133

1 72 3 4
5 6 [w

Fig. 4. Interplay between tandem repeats and novel subset matches. There are two
initial seed matches, one black, one gray. The black match has components labelled
1-7, and the neighborhood size w is shown with respect to component 7. As we attempt
leftward extension of the black match we discover the gray match in the neighborhood
of components 2 and 5 of black. A subset link is created. We also discover that some
components of the black match are within each others’ neighborhood. We classify
the black match as a tandem repeat and construct a novel subset match with one
component for each of the four tandem repeat units: {1}, {2, 3, 4}, {5, 6}, {7}.
After the first round of chaining. If the neighborhood list contained one or
more chainable groups we enter another round of extending Mi. The extension
process repeats starting with either link extension or by construction of a new
neighborhood list. When the boundaries of Mi no longer change, we classify any
subset matches as either subsumed or outside of Mi and treat them accordingly.
We process novel subsets. Finally, we may begin extension in the opposite (right-
ward) direction. The rightward extension is accomplished in a similar manner,
except that the neighborhood is constructed from Mi.Rx instead of Mi.Lx and
d ranges from −1,−2, . . . ,−w and ties are broken in favor of the largest d value.
Where left links were previously used, right links are now used and vice-versa.

Chaining the next match. When the first match popped from the procras-
tination queue has been maximally extended, we pop the next match from the
procrastination queue and consider it for extension. The process repeats until
the procrastination queue is empty. Prior to extending any match removed from
the procrastination queue, we check the match’s subsuming match pointer. If the
match has been subsumed extension is unnecessary.

3.4 Link Extension

To be considered for leftward link extension, Mi must have a left superset link to
another match, Mj. We first extend the boundaries of Mi to include the region
covered by Mj and unlink Mi from Mj . Then each of the left subset links in Mj

are examined in turn to identify links that Mi may use for further extension. Recall
that the link from Mi to Mj is of the form 〈Mj , Mi, x1, . . . , x|Mi|〉. Likewise, a left
subset link from Mj to another match Mk is of the form 〈Mj , Mk, z1, . . . , z|Mk|〉.
To evaluate whether Mi may follow a given link in the left subsets of Mj , we take
the set intersection of the x and z values for each Mk that is a left subset of Mj .
We can classify the results of the set intersection as:

– Superset: {x1, . . . , x|Mi|} ⊂ {z1, . . . , z|Mk|} Here Mk links to every compo-
nent of Mj that is linked by Mi, in addition to others.

– Chainable: {x1, . . . , x|Mi|} = {z1, . . . , z|Mk|} Here Mk links to the same set
of components of Mj that Mi links.

134 A.E. Darling et al.

– Subset: {x1, . . . , x|Mi|} ⊃ {z1, . . . , z|Mk|} Here Mi links to every component
of Mj that is linked by Mk, in addition to others.

– Novel Subset: {x1, . . . , x|Mi|} ∩ {z1, . . . , z|Mk|} �= ∅ Here Mk is neither a
superset, chainable, nor subset relative to Mi, but the intersection of their
components in Mj is non-empty. Mk and Mi form a novel subset.

Left subset links in Mj are processed in the order given above. Supersets are
never observed, because Mk would have already unlinked itself from Mj when it
was processed (as described momentarily). When Mk is a chainable match, we
extend Mi to include the region covered by Mk and set the subsuming match
pointer in Mk to point to Mi. We unlink Mk from Mj, and Mi inherits any left
superset link that Mk may have. When Mk is a subset of Mi we unlink Mk from
Mj and add it to the deferred subset list to be processed once Mi has been fully
extended. Finally, we never create novel subset matches during link extension
because Mk will never be a fully extended match.

If a chainable match was found during leftward link extension, we continue
for another round of leftward extension. If not, we switch directions and begin
rightward extension.

3.5 Time Complexity

A neighborhood list may be constructed at most w times per character of S, and
construction uses sorting by key comparison, giving O(wN log wN) time and
space. Similarly, we spend O(wN log wN) time performing link extension. The
upper bound on the total number of components in the final set of matches
is O(wN). Thus, the overall time complexity for our filtration algorithm is
O(wN log wN).

4 Results

We have created a program called procrastAligner for Linux, Windows, and
Mac OS X that implements the described algorithm. Our open-source imple-
mentation is available as C++ source code licensed under the GPL.

We compare the performance of our method in finding Alu repeats in the
human genome to an Eulerian path method for local multiple alignment [23].
The focus of our algorithm is efficient filtration, thus we use a scoring metric
that evaluates the filtration sensitivity and specificity of the ungapped alignment
chains produced by our method. We compute sensitivity as the number of Alu
elements hit by a match, out of the total number of Alu elements. We compute
specificity as the ratio of match components that hit an Alu to the sum of match
multiplicity for all matches that hit an Alu. Thus, we do not penalize our method
for finding legitimate repeats that are not in the Alu family.

The comparison between procrastAligner and the Eulerian method is nec-
essarily indirect, as each method was designed to solve different (but related)
problems. The Eulerian method uses a de Bruijn graph for filtration, but goes

Procrastination Leads to Efficient Filtration for Local Multiple Alignment 135

Table 2. Performance of procrastAlign and the Eulerian path approach on Alu re-
peats. Rep: total number of Alu elements; Family: number of Alu families; Alu: average
Alu length in bp (S.D.); Div: average Alu divergence (S.D.); Sn: sensitivity; Sp: speci-
ficity; T: compute time; Sw: palindromic seed weight; w: max gap size. Alus were
identified by RepeatMasker [22]. We report data for the fast version of the Eulerian
path method as given by Table 1 of [23]. Sensitivity and specificity of procrastAlign
was computed as described in the text.

Accession Length Rep Family Alu (bp) Div, % Method Sn % Sp % T (s) Sw w

AF435921 22 Kb 28 10 261 (69) 15.0 (6.4) Eulerian 96.3 99.4 1 - -
procrast 100 95.9 1 9 27

Z15025 38 Kb 52 13 245 (85) 15.7 (5.7) Eulerian 98.6 96.7 4 - -
procrast 100 82.5 2 9 27

AC034110 167 Kb 87 18 261 (72) 12.2 (5.9) Eulerian 93.5 95.2 14 - -
procrast 100 97.9 3 15 45

AC010145 199 Kb 118 13 277 (55) 15.0 (5.6) Eulerian 85.2 93.7 32 - -
procrast 99.1 99.2 3 15 45

Hs Chr 22 1 Mbp 404 32 252 (79) 15.2 (6.1) Eulerian 72.4 99.4 85 - -
procrast 98.3 97.3 20 15 45

beyond filtration to compute gapped alignments using banded dynamic pro-
gramming. We report scores for a version of the Eulerian method that computes
alignments only on regions identified by its de Bruijn filter. The results suggest
that by using our filtration method, the sensitivity of the Eulerian path local
multiple aligner could be significantly improved. A second important distinction
is that our method reports all local multiple alignment chains in its allotted
runtime, whereas the Eulerian method identifies only a single alignment.

We also test the ability of our method to provide accurate anchors for genome
alignment. Using a manually curated alignment of 144 Hepatitis C virus genome
sequences [27], we measure the anchoring sensitivity of our method as the frac-
tion of pairwise positions aligned in the correct alignment that are also present
in procrastAligner chains. We measure positive predictive value as the num-
ber of match component pairs that contain correctly aligned positions out of
the total number of match component pairs. procrastAligner may generate
legitimate matches in the repeat regions of a single genome. The PPV score
penalizes procrastAligner for identifying such legitimate repeats, which sub-
sequent genome alignment would have to disambiguate. Using a seed size of 9
and w = 27, procrastAligner has a sensitivity of 63% and PPV of 67%.

5 Discussion

We have described an efficient method for local multiple alignment filtration. The
chains of ungapped alignments that our filter outputs may serve as direct input
to multiple genome alignment algorithms. The test results of our prototype im-
plementation on Alu sequences demonstrate improved sensitivity over de Bruijn

136 A.E. Darling et al.

filtration. A promising avenue of further research will be to couple our filtration
method with subsequent refinement using banded dynamic programming.

The alignment scoring scheme we use can rank alignments by information
content, however a biological interpretation of the score remains difficult. If a
phylogeny and model of evolution for the sequences were known a priori then a
biologically relevant scoring scheme could be used [28]. Unfortunately, the phy-
logenetic relationship for arbitrary local alignments is rarely known, especially
among repetitive elements or gene families within a single genome and across
genomes. It may be possible to use simulation and MCMC methods to score
alignments where the phylogeny and model of evolution is unknown a priori,
but doing so would be computationally prohibitive for our application.

Acknowledgements

AED was supported by NLM Training Grant 5T15LM007359-05. TJT was sup-
ported by Spanish Ministry MECD Grant TIN2004-03382 and AGAUR Training
Grant FI-IQUC-2005. LZ was supported by AFT Grant 146-000-068-112.

References

1. Ma, B., Tromp, J., and Li, M.: PatternHunter: faster and more sensitive homology
search. Bioinformatics 18 (2002) 440–445

2. Brudno, M., and Morgenstern, B.: Fast and sensitive alignment of large genomic
sequences. Proc. IEEE CSB’02 (2002) 138–147

3. Noé, L., and Kucherov, G.: Improved hit criteria for DNA local alignment. BMC
Bioinformatics 5 (2004)

4. Kahveci, T., Ljosa, V., and Singh, A.K.: Speeding up whole-genome alignment by
indexing frequency vectors. Bioinformatics 20 (2004) 2122–2134

5. Choi, P, K., Zeng, F., and Zhang, L.: Good spaced seeds for homology search.
Bioinformatics 20 (2004) 1053–1059

6. Li, M., Ma, B., and Zhang, L.: Superiority and complexity of the spaced seeds.
Proc. SODA’06. (2006) 444–453

7. Sun, Y., and Buhler, J.: Designing multiple simultaneous seeds for DNA similarity
search. J. Comput. Biol. 12 (2005) 847–861

8. Xu, J., Brown, D.G., Li, M., and Ma, B.: Optimizing multiple spaced seeds for
homology search. Proc. CPM’04 (2004) 47–58

9. Flannick, J., and Batzoglou, S.: Using multiple alignments to improve seeded local
alignment algorithms. Nucleic Acids Res. 33 (2005) 4563–4577

10. Li, L., Stoeckert, C.J., and Roos, D.S.: OrthoMCL: identification of ortholog groups
for eukaryotic genomes. Genome Res. 13 (2003) 2178–2189

11. Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov, J.P.,
Zody, M.C., and Lander, E.S.: Whole-genome sequence assembly for mammalian
genomes: Arachne 2. Genome Res. 13 (2003) 91–96

12. Ane, C., and Sanderson, M.: Missing the forest for the trees: phylogenetic compres-
sion and its implications for inferring complex evolutionary histories. Syst. Biol.
54 (2005) I311–I317

Procrastination Leads to Efficient Filtration for Local Multiple Alignment 137

13. Margulies, M., et al. 55 other authors: Genome sequencing in microfabricated
high-density picolitre reactors. Nature 437 (2005) 376–380

14. Darling, A.C.E., Mau, B., Blattner, F.R., and Perna, N.T.: Mauve: multiple align-
ment of conserved genomic sequence with rearrangements. Genome Res. 14(7)
(2004) 1394–403.

15. Hohl, M., Kurtz, S., and Ohlebusch, E.: Efficient multiple genome alignment.
Bioinformatics 18 Suppl 1 (2002) S312–20.

16. Treangen, T., and Messeguer, X.: M-GCAT: Multiple Genome Comparison and
Alignment Tool. Submitted (2006)

17. Dewey, C.N., and Pachter, L.: Evolution at the nucleotide level: the problem of
multiple whole-genome alignment. Hum. Mol. Genet. 15 Suppl 1 (2006)

18. Sammeth, M., and Heringa, J.: Global multiple-sequence alignment with repeats.
Proteins (2006)

19. Raphael, B., Zhi, D., Tang, H., and Pevzner, P.: A novel method for multiple
alignment of sequences with repeated and shuffled elements. Genome Res. 14(11)
(2004) 2336–46.

20. Edgar, R.C., and Myers, E.W.: PILER: identification and classification of genomic
repeats. Bioinformatics 21 Suppl 1 (2005)

21. Kurtz, S., Ohlebusch, E., Schleiermacher, C., Stoye, J., and Giegerich, R.: Com-
putation and visualization of degenerate repeats in complete genomes. Proc. 8th
Intell. Syst. Mol. Biol. ISMB’00 (2000) 228–38.

22. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and
Walichiewicz, J.: Repbase Update, a database of eukaryotic repetitive elements.
Cytogenet. Genome Res. 110 (2005) 462–467

23. Zhang, Y., and Waterman, M.S.: An Eulerian path approach to local multiple
alignment for DNA sequences. PNAS 102 (2005) 1285–90.

24. Siddharthan, R., Siggia, E.D., and van Nimwegen, E.: PhyloGibbs: a Gibbs sam-
pling motif finder that incorporates phylogeny. PLoS Comput. Biol. 1 (2005)

25. Nagarajan, N., Jones, N., and Keich, U.: Computing the P-value of the information
content from an alignment of multiple sequences. Bioinformatics 21 Suppl 1
(2005)

26. Szklarczyk, R., and Heringa, J.: Tracking repeats using significance and transitiv-
ity. Bioinformatics 20 Suppl 1 (2004) I311–I317

27. Kuiken, C., Yusim, K., Boykin, L., and Richardson, R.: The Los Alamos hepatitis
C sequence database. Bioinformatics 21 (2005) 379–84

28. Prakash, A., and Tompa, M.: Statistics of local multiple alignments. Bioinformatics
21 (2005) i344–i350

Controlling Size When Aligning Multiple

Genomic Sequences with Duplications

Minmei Hou1, Piotr Berman1, Louxin Zhang2, and Webb Miller1

1 Department of Computer Science and Engineering, Penn State, University Park, PA
16801, USA,

mhou@cse.psu.edu, berman@cse.psu.edu, webb@bx.psu.edu
2 Department of Mathematics, National University of Singapore, Science Drive 2,

Singapore 117543
matzlx@nus.edu.sg

Abstract. For a genomic region containing a tandem gene cluster, a
proper set of alignments needs to align only orthologous segments, i.e.,
those separated by a speciation event. Otherwise, methods for finding re-
gions under evolutionary selection will not perform properly. Conversely,
the alignments should indicate every orthologous pair of genes or ge-
nomic segments. Attaining this goal in practice requires a technique for
avoiding a combinatorial explosion in the number of local alignments.
To better understand this process, we model it as a graph problem of
finding a minimum cardinality set of cliques that contain all edges. We
provide an upper bound for an important class of graphs (the problem is
NP-hard and very difficult to approximate in the general case), and use
the bound and computer simulations to evaluate two heuristic solutions.
An implementation of one of them is evaluated on mammalian sequences
from the α-globin gene cluster.

1 Introduction

The ENCODE project [22] has the goal of identifying all functional genomic seg-
ments in 1% of the human genome. As part of the project, genomic sequence data
from a number of mammals are being generated for the targeted 1%, in the belief
that alignment and analysis of the sequences will help predict the functional seg-
ments. Several computer programs for aligning genomic regions have been used
for this purpose [15,16]. In our opinion, the current crop of alignment programs
performs acceptably in many parts of the genome. However, for regions contain-
ing tandem gene clusters, more software development is necessary. The deficiency
of current methods can be explained using the following long-accepted concepts.

According to standard biological jargon [6,7], two sequences are homologs if
they are evolutionarily related, in which case they diverged at either a duplication
event (and are called paralogs) or a speciation event (and are called orthologs).
It is widely appreciated that a basic goal of alignment algorithms is to align
sequences if and only if they are homologs. We feel that a better statement of
the goal is to align precisely the orthologs. That is, we want the evolutionary

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 138–149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Controlling Size When Aligning Multiple Genomic Sequences 139

relationship among aligned sequences to be the same as the phylogenetic tree
relating the species for those sequences. A main (and probably the main) use of
alignments is to identify intervals within the aligned segments in which the sim-
ilarity/divergence pattern differs from neutral evolution, and modern methods
for detecting such intervals [21,5,23] require, for their proper functioning, that
aligned rows be orthologs. In regions of the genome where no intervals have been
duplicated, orthology is equivalent to homology, and existing alignment methods
are effective. However, for tandem gene clusters, we know of no existing aligner
that does a good job.

To represent duplications and other large-scale evolutionary rearrangements,
our programs for aligning several genomic sequences produce a set of alignment
“blocks”, each of which is in essence a traditional alignment of segments from the
given sequences or their reverse complements [2]. With duplications, the same
sequence position can appear in several blocks. It is useful to note that if rows of
a block are pairwise orthologous, then no two rows can be from the same species.

To build a new alignment program that obeys the two requirements

(a) any two rows of a computed block are orthologous and
(b) any pair of orthologous positions appears together in at least one block,

two hurdles had to be overcome. The first was to distinguish orthologs from
paralogs, and for this there was a large literature to draw from. We provide
our solution in another paper [11]. The second difficulty was that the num-
ber of possible blocks can grow exponentially with the number of sequences
and duplications, which is the topic of this paper. For instance, a straightfor-
ward implementation meeting our requirements produced over 900 Mbytes of
alignments when applied to intervals containing the α-globin gene clusters of 20
mammals, where the total length of the original sequences was only 3.9 Mb. We
designed and implemented a space-saving strategy that decreased the amount
of output to 8.7 Mb, while still fulfilling requirements (1) and (2). New ideas
were required to achieve this savings, and we were led to the development of
a theoretical model that turned out, in the general case, to be equivalent to a
previously studied NP-complete combinatorial optimization problem, which we
will call MinCliqueCov, namely, finding a minimum cardinality set of cliques
that contains all edges of a given undirected graph. We show that the graphs we
study have special properties, and they can be utilized to apply divide-conquer
techniques, which would not work well with an arbitrary graph.

Here we describe our graph-theoretic model and derive a theoretical upper
bound on the number of blocks that are needed to meet our requirements in
an important subclass of problems. Also, using the model, we formulate two
heuristic methods, and with the help of our upper bound and some computer
simulations, we measure where the two methods lie in the tradeoff between
computation time and output size. We also compare our solutions to an existing
heuristic method for general graphs [13]. Finally, we describe the performance on
the α-globin gene cluster of our alignment software that is based on the new ideas.

140 M. Hou et al.

2 Methods

2.1 A Graph-Theoretic Model

Let G = (V, E) be a graph with vertex set V and edge set E. An m-vertex
complete subgraph of G is called an m-clique. A clique cover of G is a set of
cliques whose edges contain every edge e ∈ E. The clique cover number, cc(G),
of G is defined to be the minimum number of cliques in a clique cover of G.

Assume we align genomic sequences from K species in a genomic region con-
taining a family of tandemly duplicated genes. Suppose that each member of
that gene family can be aligned to every orthologous member. In our model,
a vertex represents a gene in one of the species, and there is an edge between
two vertices if the genes that they represent are orthologous. Thus, we obtain a
K-partite graph, called an alignment graph, where each part contains the nodes
that represent the gene family members in a given species. A multi-alignment
block with pairwise orthologous rows corresponds to a clique, and a set of multi-
alignment blocks that contains every pairwise alignment (condition (2) in the
Introduction) corresponds to a clique cover. Thus it would be helpful to solve
MinCliqueCov for the alignment graph. Figure 1 gives an example in which

A

B C

a1 a2

b1

b2
c2

c1

(1) (2)

A

B C

a1 a2

b1

b2
c2

c1

a1b1c1 a2b1c1

a1b1c2 a2b1c2

a1b2c1 a2b2c1

a1b2c2 a2b2c2

a1b1c1

a2b1c2

a2b2c1

a1b2c2

Fig. 1. A trivial example on minimum clique cover. Panel 1 shows 8 cliques to cover
all edges, while panel 2 shows 4 cliques to cover all edges.

there are three species (A, B and C), each containing two members of a gene
family. Each pair of genes from different species is orthologous. In these example,
there are eight possible alignment blocks, but four blocks are sufficient to include
each orthologous pair in a block.

Unfortunately, MinCliqueCov is NP-hard [17]. The restriction to multi-
partite graphs does not make this problem easier since a graph of n vertices
is trivially an n-partite graph in which each part has only one vertex. Various
techniques have been applied to solve MinCliqueCov and closely related prob-
lems [9,18,3]. For instance, when the degree of any vertex in G is at most 4, the
problem is solvable in linear time [19].

2.2 A Special Case

In this section, we investigate the graph structure that arises under certain nat-
ural conditions, namely when all duplications have occurred after all speciation
events. That is, we suppose that each gene is orthologous to every gene in a

Controlling Size When Aligning Multiple Genomic Sequences 141

different species. Moreover, to keep things simple, we supposed that each of K
species has precisely P copies of the gene. The resulting alignment graph is a
complete K-partite graph: each part has P nodes, and there is an edge between
any two nodes that are in two different parts. We denote such a graph by GK,P .
Note that the shape of such graph is determined for each pair of K and P .
Thus MinCliqueCov restricted to graphs of the form GK,P has O(n) distinct
instances with n nodes, where n = KP (because n can be factored into KP in
less than n ways). It was shown that problems with polynomially many instances
per size cannot be NP-hard (unless P=NP) [1]. But even for the case of P = 2,
we do not know the exact solution. The technical result of this paper does not
imply the problem is easy either. The purpose of this section is to derive a non-
trivial upper bound on cc(GK,P), which will help us to interpret the results of
simulations that we report below.

First, though, let us mention lower bounds. For K ≥ 2, cc(GK,P) ≥ P 2, since
there are P 2 edges between any two parts of the graph, and any clique can contain
at most one of those edges. Moreover, it was recently proved that cc(GK,P) ≥
logb(KP), where b = P

(P−1)(P −1)/P [4]. That lower bound is approximately equal
to P (logP K + 1).

For an upper bound, it has been known for some time that cc(GK,2) =
Θ(log2 K) [9], but we seek a bound for general P . Assume GK,P has the fol-
lowing node set and edge set:

V = {u(i, j) : 0 ≤ i < K and 0 ≤ j < P}
E = {{u(i, j), u(k, l)} ⊂ V : i �= k}

To present a recursive construction of small clique covers of GK,P , we start with
two simple observations.

Observation 1. Let U ⊆ V . If C is a clique cover of G, then {C ∩U : C ∈ C}
is a clique cover of G(U). Thus cc(G(U)) ≤ cc(G).

Observation 2. If Ci is a clique cover of < V, Ei > for i = 1, 2 . . . , k then⋃k
i=1 Ci is a clique cover of < V,

⋃k
i=1 Ei >.

The edges of GK,P can be split into two sets

E0 = {{u(i, j), u(k, l)} ∈ E : j = l}
E1 = E − E0

We can cover < V, E0 > with cliques Cj = {u(i, j) ∈ V }, j = 0, . . . , P − 1. Now
it remains to find a clique cover for G1

K,P =< V, E1 >.
If there are K = M × L species, the edges of G1

ML,P can be represented as
E2 ∪ E3, where

E2 = {{u(i, j), u(k, l)} ∈ E1 : �i/L� �= �k/L�}
E3 = {{u(i, j), u(k, l)} ∈ E1 : i mod L �= k mod L}

To make that split more intuitive, put the ML parts of GML,P into a matrix
with M rows and L columns. An edge between different parts will either connect

142 M. Hou et al.

parts from different rows, or parts from different columns. Denote the set of edges
connecting parts from different rows by E2, and the set of edges connecting parts
from different columns by E3. Note that E2 and E3 are not necessarily disjoint.

Lemma 1. cc(< V, E2 >) ≤ cc(G1
M,P).

Proof. Consider a clique cover C of G1
M,P . Obtain C′ by transforming each clique

C ∈ C into

C′ = {u(i, j) ∈ V : u(�i/L�, j) ∈ C}.
C′ is still a clique, because if �i/L� �= �k/L� than i �= k. Now an edge e =
{u(i, j), u(k, l)} of E1 is covered by C′ unless �i/L� = �k/L�, hence e �∈ E2. ❐

Lemma 2. cc(< V, E3 >) ≤ cc(G1
L,P).

Proof. Similar to Lemma 1. ❐

Lemma 3. cc(G1
P,P) ≤ P (P − 1) if P is prime.

Proof. We construct a set of cliques Ca,b = {{u(i, ai + b mod P) : 0 ≤ i < P}
where 0 < a < P and 0 ≤ b < P . Given an edge {u(i, j), u(k, l)} ∈ E1 we can
find the parameters a, b of the clique that covers it by solving linear system

ai + b = j mod P

ak + b = l mod P

This system yields the following equation for a: a(i−k) = j− l mod P . Because
i �= k, i− k has a reciprocal mod P , and because j �= l, the a computed from
this is non-zero. ❐

Theorem 1. cc(GK,P) ≤ P + P (P − 1)	logP K
 if P is a prime.

Proof. By Observation 1, it suffices to prove that cc(GK,P) ≤ P + aP (P − 1)
for K = P a, where a is an integer. Because we can cover E0 with P cliques, it
suffices to prove that cc(G1

K,P) ≤ aP (P − 1). We can show it by induction on a.
For a = 1 this is proven in Lemma 3. Assuming it is proven for a − 1, we have
K = ML where M = P and L = P a−1. This allows to apply Lemmas 1 and 2
to show that cc(G1

K,P) ≤ (a− 1)P (P − 1) + P (P − 1) = aP (P − 1). ❐

When P is not a prime, we can use the above result for P ′, where P ′ is the
smallest prime larger than P . For example, when P = 6 and K = 2, we have a
trivial solution with 36 cliques (indeed, edges), but when K = 3, we can use a
solution for P ′ = 7 that has 49 cliques, and this solution works for K ≤ 7, while
for K ≤ 343 we have a solution with 7 + 2× 42 = 91 cliques.

Of course, better solutions may exist. It is easy to find a solution for G1
3,4

with 12 cliques; see Figure 2. We can apply the reasoning of Theorem 1 to
show that cc(GK,4) ≤ 4 + 12	log3 K
 which, except for K = 4, 5, is better than
5 + 20	log5 K
. Thus, cc(GK,P) is at most P (P − 1) logP K + P when P is a
prime number and K is in power of P . In cases that P and K do not satisfy these
conditions, the values can be approximated by the nearest prime number and its
power. This upper bound is conjectured to be tight, but this has not been proved.

Controlling Size When Aligning Multiple Genomic Sequences 143

︷ ︸︸ ︷
{a0, b0, c0}
{a1, b1, c1}
{a2, b2, c2}
{a3, b3, c3}

︷ ︸︸ ︷
{a0, b1, c2} {a1, b0, c3} {a2, b0, c1} {a3, b0, c2}
{a0, b2, c3} {a1, b2, c0} {a2, b1, c3} {a3, b1, c0}
{a0, b3, c1} {a1, b3, c2} {a2, b3, c0} {a3, b2, c1}

E0
E1

Fig. 2. Clique cover of G3,4 with 16 cliques

2.3 Heuristic Solutions

MinCliqueCov is NP-hard, but also has no efficient approximation algorithm
unless NP=P [14], so we have to use heuristics. We propose two heuristic methods
for generating clique covers for complete multi-partite graphs studied in the pre-
vious section. It is then relatively straightforward to adapt these methods for the
multi-alignment problem in tandem gene clusters, even in the general case of ar-
bitrary orthology relationships; the next section discusses some of the issues that
arise. However, in the idealized setting of GK,P , with the upper bound derived
above, we can evaluate how close they come to an ideal reduction in output size.

Both heuristic methods follow a divide-and-conquer strategy: Partition G into
two graphs, G1 and G2, each having about K/2 parts, find clique covers CC1

and CC2 of G1 and G2 respectively, and merge them to obtain a clique cover
CC of G. While these methods do not give the fewest cliques, they efficiently
find a relatively small clique cover. The merge procedures can be described as
follows, where “uncovered” refers to an edge not currently in a clique in CC.

Heuristics for MinCliqueCov were studied already in 1978 [13]. Recently an
exact solution was also proposed [8] for the general graph. Unfortunately, our
complete multi-partite graph is quite dense, and the reduction rules from [8] can-
not be applied here. Thus we only compare our heuristic methods’ performance
with [13]’s method.

Merge I forms a new clique from the pair of cliques that maximizes the number
of additional covered edges. Merge II processes cliques of CC1 and CC2 in a
random order and forms any new clique that covers at least one new edge.
Running times are dominated by the number of executions of the loops 2a and 2b,
respectively, which are essentially the number of cliques generated. The lowest-
level operation inside loop 2a is to examine whether an edge is covered or not;
for loop 2b it is to decide whether a clique contains a certain edge or not. Both
operations involve an array access and can be regarded as taking unit time. The
number of unit operations inside loop 2a is |CC1| · |CC2| ·K1 ·K2, where K1 and
K2 are the number of partitions (species) of G1 and G2. The number of unit
operations inside loop 2b is |CC1| ·K1 + |CC2| ·K2. The performance of these
two methods, in terms of both actually running time and the number of cliques
generated, is analyzed below.

2.4 Application in the Aligner Program

The above divide-and-conquer methods can be adapted to so-called “progressive”
multiple alignment programs, which work leaves-to-root in the phylogenetic tree

144 M. Hou et al.

Merge I (CC1, CC2)
1 CC ← φ
2a while there exists an uncovered edge
3 For each pair of cliques ci and cj from CC1 and CC2 respectively
4 uij ← the number of uncovered edges of ci ∪ cj

5 (cmaxi, cmaxj) ← the pair with maximum uij

6 insert cmaxi ∪ cmaxj to CC
7 Output CC

Merge II (CC1, CC2)
1 CC ← φ
2b while there exists an uncovered edge (u, v) between subproblems
3 c1 ← a clique from CC1 that contains u
4 c2 ← a clique from CC2 that contains v
5 insert c1 ∪ c2 into CC
// We still have to incorporate unused cliques from each subproblem
6 while there exists an unused clique c1 from CC1

7 c2 ← an unused clique in CC2; if none, then any clique in CC2

8 insert c1 ∪ c2 into CC
9 while there exists an unused clique c2 from CC2

10 c1 ← an unused clique in CC1; if none, then any clique in CC1

11 insert c1 ∪ c2 to CC
12 Output CC

for the given species. At a tree node, these aligners merge multiple alignments
from the sub-trees, which is analogous to merging cliques for subgraphs G1 and
G2, except that the split into subproblems might not be balanced. The process of
merging blocks from the left and right subtree is guided by pairwise alignments
between a species in the left subtree and a species in the right subtree. The set of
multi-alignment blocks corresponding to the tree’s root constitutes the multiple
alignment of the original K species.

Thus, the use of the guide tree by the aligner can be viewed as the recursive
partition of the alignment graph, and such a partition can be used both by Merge
I and Merge II. In our current BOAST aligner, we have decided to apply Merge
II since our tests indicated that Merge I could be about 1000 times slower (see
Figure 4). While Merge I produced fewer cliques(see Figure 3), i.e., alignment
blocks, Merge II produced a number that was acceptably small.

We need to address the following issue. The alignment graph generally has
fewer edges than a complete K-partite graph, since some speciation events are
preceded by duplications. Consider what we should expect if we have a perfect
alignment graph, with all ortholog/paralog relationships properly diagnosed. We
have two siblings T1 and T2 with common ancestor T and let ci be a clique in
the subgraph of Ti, i = 1, 2. One can see that either c1 ∪ c2 is also a clique, or
there are no edges between c1 and c2 (see [11] for the analysis of orthologous
inference). In this case, when Merge II selects a pair of cliques with union that
covers at least one new edge (lines 3-4), this union is a clique. When Merge II
processes an unused clique c1 in line 7 and 10, we first look for a clique c2 in
another sub-tree that is connected to c1, and the union of them becomes a new
clique; if none exists we simply add c1 to the output.

Controlling Size When Aligning Multiple Genomic Sequences 145

Clearly, this adaptation may be incorrect if we have an imperfect alignment
graph, ie., with some edges established wrongly and some correct edges missing.
Consequently, it may happen that a pair of selected cliques, c1 and c2, has some
connections, but not all. If only a minority of the possible edges between c1 and
c2 are present, we behave as if c1 and c2 were not connected at all, and if the
majority is present, we behave as if c1 ∪ c2 was a clique. This majority criterion
can have the effect of correcting some errors created by incorrect identification
of orthologous pairwise alignments [11]. Note that we have to choose between
two kinds of discrepancies in the output. One is that we do not include all actual
orthologous relationship in a blocks. The second is that we contaminate a block
with a paralogous relationship. If one kind of discrepancy is more harmful than
the other, we can replace the majority criterion with some other ratio.

3 Results

3.1 Simulations

Methods Merge I and II were tested on graphs of the form GK,P , i.e, complete
K-partite graphs, where each part has P nodes. The results are plotted in
Figure 3(a) and 3(c), which shows that Merge I substantially outperforms Merge
II. Values of upper bound P + P (P − 1)	logp K
 are shown in Figure 3(b). The
bounds for P=4 are determined by cc(GK,4) ≤ 4 + 12	log3 K
 discussed below
Theorem 1. The lower bound from [4] is lower than the trivial P 2 bound in most
of our cases, so we do not show it in the figure.

Though Merge I produces fewer cliques, it requires a longer running time.
To estimate the difference in CPU requirements, we counted the numbers of
previously described unit operations, so the impact of different number of cliques
produced by the two methods is included. Although it is possible to improve the
time efficiency of Merge I by designing better data structures, Merge I will
always be slower than Merge II.

The heuristic method from [13] takes even more time than Merge I, so its run-
ning time analysis is not shown here. However, we plot its clique numbers. As
shown in Figure 3(d), it produces more cliques than Merge II for any instances.

3.2 α-Globin Gene Cluster

A recent study carefully identified ortholgous genes in the α-globin clusters of
a number of mammals [12]. There are four types of genes in those clusters: ζ,
αD, α and θ. Each species discussed below has exactly one αD-related gene, so
those genes are not pertinent to this analysis. The studied species have 1 to 3
ζ-related genes, 1 to 4 α-related genes, and 0 to 3 θ-related genes (counts include
pseudogenes). Table 1 shows details. Each gene copy is regarded as a node in
our graph.

Our earlier TBA program [2,15,16] guarantees that every position in the ref-
erence sequence (human in this case) is in exactly one multiple alignment block,

146 M. Hou et al.

Simulation on Merge I

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

K : number of partitions (species)

n
u
m

b
er

 o
f

cl
iq

u
es

P=2

P=3

P=4

P=5

(a)

Upper Bounds

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30

K : number of partitions (species)

n
u

m
b

er
 o

f
cl

iq
u

es

P=2

P=3

P=4

P=5

(b)

Simulation on Merge II

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30

K : number of partitions (species)

n
u
m

b
er

 o
f

cl
iq

u
es

P=2

P=3

P=4

P=5

(c)

Simulation on Kou method

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30
K : number of partitions (species)

n
u
m

b
er

 o
f

cl
iq

u
es

P=2

P=3

P=4

P=5

(d)

Fig. 3. Simulations of three heuristic procedures together with plots of upper bounds,
with different values of K and P . The curves, top to bottom, refer to P=2,3,4,5.

and thus TBA is not able to capture all pairwise orthologous relationship in a
tandem gene cluster. For example, each human α gene is aligned to only one rat
α gene, despite the fact that a human α is actually orthologous to two more rat
α genes, and those alignments are lost. Our new aligner, called BOAST, which
implements Merge II, captures all pairwise orthologous relationship.

We aligned sequences containing the α-globin gene clusters from 20 mammals.
Each sequence is around200Kbases. Both TBAand BOAST utilize pairwise align-
ments computed by blastz [20]. For BOAST, the pairwise alignments are filtered by
a program called TOAST [11], which retains only the putatively orthologies (i.e.,
deletes paralogous matches). After computation of pairwise alignments, TBA pro-
duces 7.5 Mb of alignments after 170 CPU seconds, while BOAST produces 8.7 Mb
of alignments in around 112 CPU seconds.

Each aligner outputs a set of blocks, whose endpoints do not in general cor-
respond to gene or exon boundaries. Moreover, each functional globin gene has
three exons, and many alignments do not extend from one exon to the next.
We estimated how many cliques were formed for each type of genes as follows.
For a given gene sequence, we manually determined three positions distributed
roughly evenly throughout the gene, and counted the number of times each po-
sition appeared in the multi-alignment blocks; the maximum of the three counts
was used to estimate the number of times the gene copy appears in the blocks.

Controlling Size When Aligning Multiple Genomic Sequences 147

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

K : number of partitions (species)

lg
 (

n
u

m
b

er
 o

f
u

n
it

 o
p

er
at

io
n

s)

P=2 (Merge II)

P=3 (Merge II)

P=5 (Merge II)

P=2 (Merge I)

P=3 (Merge I)

P=5 (Merge I)

Fig. 4. Comparisons of running time on methods Merge I and II

In this example (α-globin clusters of 20 species), the clique sizes (i.e., the num-
ber of rows in a multi-alignment block) vary from 4 to 20, with most between
16 and 20. Alignment blocks containing θ-related genes have at most 17 rows
since three species do not have a θ-related gene. Other blocks with less than 20
rows result from a number of factors, including inconsistent pairwise alignments,
pseudogenes, or retention of a non-orthologous alignment. With many-to-many
orthologous relationships, there will be combinatorial increase on the number of
alignment blocks. Table 1 shows that utilizing Merge II, we reduce the number
of alignment blocks to 26 for ζ-related alignments and 58 for α-related align-
ment. It means that 26 and 58 multiple alignment blocks contain all pairwise
orthologous relationships of a certain region for ζ-related and α-related genes
respectively.

The BOAST alignments are reference-independent, which means that no se-
quence data from any of the species is missing from the alignment. One of our
tools extracts a reference-sequence-based alignment from the BOAST alignment
for any specified reference. This gives an alignment similar in size to the output
of a typical reference-based multiple aligners, for example multiz [2]. Moreover,
the BOAST alignments capture complete and accurate orthology information,
which is currently lost by other aligners.

Table 1. Number of copies for each type of α-globin genes of 20 mammals, and num-
ber of cliques formed for each type of genes in the multiple alignment employing the
heuristic Merge II. When the number of genes is given in the form x-y, x refers to
genes, and y refers to genes together with pseudogenes.

gene a
rm

a
d
il
lo

b
a
b
o
o
n

ca
t

ch
im

p

co
lo

b
u
s

co
w

d
o
g

d
u
sk

ti
t

g
a
la

g
o

h
ed

g
eh

o
g

h
u
m

a
n

le
m

u
r

m
a
ca

ca

m
a
rm

o
se

t

m
o
u
se

ow
lm

p
ig

ra
t

rf
b
a
t

sq
m

o
n
k
ey

#cliques

ζ-related 1 2 2 2 2 2 2 1 2 2 1-2 1 2 1 1 1 1 1 1 2 26
α-related 1 1-2 1 1-3 2-4 2 1 2 2 2-3 2-3 2 2 1-2 2-3 2 1 3 1 2 58
θ-related 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1-3 1 1 3 0 1 7

148 M. Hou et al.

4 Conclusion and Further Work

In gene clusters having a significant level of lineage-specific duplications (i.e., pro-
ducing many-to-many orthology relationships), it is not practical to enumerate
all possible multi-alignment blocks having pairwise orthologous rows. However,
we have shown here that it is still frequently feasible to produce a set of blocks
with the property that every pair of orthologs appears together in one of the
blocks. The essence of the situation is captured by the problem of finding a
minimum-cardinality clique cover. Both the problems of the finding the mini-
mum number of cliques to cover all edges and the minimum number of cliques
to cover all nodes (see below) are NP-complete. However, our simulations show
that sizes can in practice be reduced (especially by Merge I) to be close to the
upper bound. Though our alignment program has only incorporated Merge II,
it still dramatically reduces the alignment size, and makes it feasible to align
tandem gene clusters from many species. In the future, we hope to implement
Merge I in our alignment program.

Though the clique cover problem for an arbitrary graph is NP-complete, it is
open whether the problem’s restriction to alignment graphs is intractable. The
structure of the graphs is constrained by the phylogenetic tree for the species in
question and by properties of the orthology relationship [11], and these restriction
might be helpful for determining clique covers.

It also remains to investigate other criteria for aligning regions containing
duplicated segments or genes. For instance, one could loosen the requirement
that each orthologous pair of positions occur in two rows of the same block, and
ask only that a position of one species that has an ortholog in a second species
must appear in the same block as some (perhaps different orthologous) position
in that second species. In essence, this can be modeled as seeking the minimum
number of cliques to cover all nodes in the graph constructed above, which in
general requires fewer cliques than the problem studied here. We think that the
problem of aligning tandem gene clusters is sufficiently important that a variety
of approaches should be investigated.

References

1. Berman, P.: Relationship between density and deterministic complexity of NP-
complete languages. Lecture Notes in Compute Science 62, 1978 63–71

2. Blanchette, M. et al.: Aligning multiple genomic sequences with the threaded block-
set aligner. Genome Research 14, 2004 708–715

3. Cacceta, L., P. Erdos, E.T. Ordman and N.J. Pullman: On the difference between
clique numbers of a graph. Ars Combinatoria 19A, 1985 97–106.

4. Cavers, M.: Clique partitions and coverings of graphs 2005 (Masters thesis, Uni-
versity of Waterloo)

5. Cooper, G. M., et al.: Distribution and intensity of constraint in mammalian ge-
nomic sequences. Genome Research 15, 2005 901–913.

6. Fitch, W. M.: Distinguishing homologous from analogous proteins. Syst. Zool. 19,
1970 99–113.

Controlling Size When Aligning Multiple Genomic Sequences 149

7. Fitch, W. M.: Homology, a personal view on some problems. Trends Genet. 16,
2000 227–231.

8. Gramm, J., et al: Data reduction, exact, and heuristic algorithms for clique cover.
ALENEX , 2006 86–94.

9. Gregory, D. A., and N.J. Pullman: On a clique covering problem of Orlin. Discrete
Math. 41, 1982 97–99.

10. Hall, M. Jr.: A problem in partition, Bull. Amer. Math. Soc. 47, 1941 801–807.
11. Hou, M., et al: Aligning multiple genomic sequences that contain duplications.

Manuscript.
12. Hughes, J. R., et al: Annotation of cis-regulatory elements by identification, sub-

classification, and functional assessment of multispecies conserved sequences. Proc.
Natl. Acad. Sci. USA 102. 2005 9830–9835

13. Kou, L.T., et al: Covering edges by cliques with regard to keyword conflicts and
intersection graphs. Communications of the ACM 21(2). 1978 135–139

14. Lund C. and M. Yannakakis, On the hardness of approximation minimization prob-
lems. J. Assoc. for Comput. Mach. 41, 1994 961–981.

15. Margulies, E. H., et al. Relationship between evolutionary constraint and genome
function in 1% of the human genome. Submitted to Nature.

16. Margulies, E. H., et al. Annotation of the human genome through comparisons of
diverse mammalian sequences. Submitted to Genome Research.

17. Orlin, J. Contentment in graph theory: covering graphs with cliques. Indag. Math.
39, 1977 406–424.

18. Pullman, N. J., and A. Donald: Clique coverings of graphs II: complements of
cliques. Utilitas Math. 19, 1981 207–213.

19. Pullman, N. J.: Clique coverings of graphs IV: algorithms. SIAM J. on Computing
13, 1984 57–75.

20. Schwartz, S., et al. Human-Mouse Alignments with BLASTZ. Genome Res. 13(1),
2003 103–107.

21. Siepel, A., et al. Evolutionarily conserved elements in vertebrate, insect, worm,
and yeast genomes. Genome Research 15, 2005 1034–1050.

22. The ENCODE Project Consortium: The ENCODE (ENCyclopedia of DNA Ele-
ments) Project. Science 306, 2004 636–640.

23. Wakefield, M. J., P. Maxwell and G. A. Huttley: Vestige: maximum likelihood
phylogenetic footprinting. BMC Bioinformatics 6, 2005 130.

Reducing Distortion in Phylogenetic Networks

Daniel H. Huson1, Mike A. Steel2, and Jim Whitfield3

1 Center for Bioinformatics (ZBIT), Tübingen University, Germany
huson@informatik.uni-tuebingen.de

2 Allan Wilson Centre, University of Canterbury, Christchurch, New Zealand
m.steel@math.canterbury.ac.nz

3 Department of Entomology, University of Illinois at Urbana-Champaign, USA
jwhitfie@life.uiuc.edu

Abstract. When multiple genes are used in a phylogenetic study, the
result is often a collection of incompatible trees. Phylogenetic networks
and super-networks can be employed to analyze and visualize the incom-
patible signals in such a data set. In many situations, it is important to
have control over the amount of imcompatibility that is represented in a
phylogenetic network, for example reducing noise by removing splits that
do not recur among the source trees. Current algorithms for computing
hybridization networks from trees are based on a combinatorial analysis
of the arising set of splits, and are thus sensitive to false positive splits.
Here, a filter is desirable that can identify and remove splits that are not
compatible with a hybridization scenario. To address these issues, the
concept of the distortion of a tree relative to a split is defined as a mea-
sure of how much the tree needs to be modified in order to accommodate
the split, and some of its properties are investigated. We demonstrate the
usefulness of the approach by recovering a plausible hybridization sce-
nario for buttercups from a pair of gene trees that cannot be obtained
by existing methods. In a second example, a set of seven gene trees from
microgastrine braconid wasps is investigated using filtered networks. A
user-friendly implementation of the method is provided as a plug-in for
the program SplitsTree4.

1 Introduction

In systematics, the evolution of different species is of interest, however, phylo-
genetic inference is often based on the DNA or protein sequence of homologous
genes and the resulting gene trees are usually interpreted as estimations of an
underlying species tree. A common observation is that different genes give rise
to different trees, even in the absence of tree-reconstruction errors, and this
fact can usually be explained by mechanisms such as incomplete lineage sorting,
duplication-and-loss, horizontal gene transfer (e.g. in bacteria) or hybridization
(e.g. in plants).

Although phylogenies based on single gene analysis [32] continue to play a
central role in phylogenetics, biologists interested in the evolution of specific
groups of taxa often sequence and use more than one gene to infer the phylogeny

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 150–161, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reducing Distortion in Phylogenetic Networks 151

of the taxa [23], the hope being that as more data is brought into the analysis, a
better “species-signal” to “gene-noise” ratio will be obtained and that deviating
signals from individual genes can be filtered out.

If the goal is simply to obtain a good estimation of the species tree and if
there is evidence that a majority of the genes under study have evolved in a
similar way along the same species tree, then one approach is to concatenate the
alignments given for each of the genes to produce one large dataset, to which
tree-building methods are then applied [23,25]. If each of the genes is long enough
to contain strong phylogenetic signals for the group of taxa under investigation,
then a second approach is to compute individual gene trees, to summarize them
using a (usually somewhat unresolved) consensus tree and then to interpret the
consensus as a representation of the well-supported parts of the species tree
[30,10,26].

In both cases, the final result suppresses all incompatible signals. However, if
the actual incongruencies of the individual gene trees are themselves of interest,
then a representation of the data set that maintains (some of) the incompatible
signals may be useful. Such a representation is given by the concept of a “split
network” [1] and methods for computing such networks are presented in [8] and
are implemented in the program SplitsTree4 [15].

To obtain an explicit model of reticulate evolution, reticulate networks are
used [15] that explain a given set of trees in terms of hybridization, horizon-
tal gene transfer or recombination events [13,7,19,17,18]. Current methods for
determining a hybridization scenario that explains a given set of trees operate
by performing a combinatorial analysis of the total set of splits of the trees
to identify a hybridization network that generates the trees [22,17]. By defin-
ition, combinatorial methods are very sensitive to false positive splits, that is,
splits that are incompatible to other splits in the input due to reasons such as
homoplasy, tree-estimation error, incomplete lineage sorting etc.

Given a collection (or profile) P of k gene trees all inferred on the same set of
taxa X , one approach to constructing a set of splits that summarize the set of
trees, without eliminating all incompatibilities, is given by the consensus network
method [2,14]. This method consists of returning all splits that occur in at least
αk of the given input trees, for a given threshold α ∈ [0, 1].

A main drawback of the consensus network approach is that in practice typical
data sets often consist of partial trees, that is, gene trees that each only mention
some subset X ′ of the total taxon set X . Partial trees arise because the sequence
data for some gene has not yet been sequenced, or because the gene is not present
in the genome, for some taxon.

Given a profile of partial gene trees, the Z-closure method [16] computes a
super network on the full taxon X that summarizes all the input trees. This
approach first uses an inference rule to construct a set of splits on the full taxon
set and then, as above, a network construction algorithm [8] is employed to
obtain a split network. A practical weakness of this method is that it does not
provide a natural parameter (such as α above) with which one can control the
amount of incompatibility that is represented in the resulting network.

152 D.H. Huson, M.A. Steel, and J. Whitfield

The goal of this paper is to develop an adjustable parameter than can be used
with any super network method or consensus method to generate split networks
that represent a controlled amount of incompatible signals. The approach that
we take is to filter splits by the amount of “distortion” that they generate. We
have implemented this approach as a plug-in FilteredSuperNetwork for the
SplitsTree4 program [15].

This concept is particularly useful in the context of computing hybridization
networks from gene trees, because it can be used to remove splits from a data
set that are not compatible with a simple hybridization scenario. This is due
to the fact that the distortion of a split equals the number of SPR or TBR
operations required to modify a tree to accommodate the split, which will be
small for incompatibilities caused by hybridization.

We illustrate this use of a distortion filter for a set of 46 Ranunculus (but-
tercup) species, represented by two gene trees, one based on a chloroplast JSA
region, and the other based on a nuclear ITS region [20]. Although this dataset
is known to contain examples of both allopolyploid and diploid hybridization
events (Pete Lockhart, personal communication), past attempts to compute a
corresponding hybridization network from the two trees have failed [17]. Here
we demonstrate that a plausible hybridization network can be computed when
employing an appropriate distortion filter.

A second example is given by a set of seven gene trees for 45 species of wasps
[3]. Mixed-model Baysian analysis [24] of the combined data set indicates that
there is little support for internal edges of the phylogeny and here we show how
filtered network methods can be used to investigate whether this lack of support
is due to conflict between the different gene trees, or whether it represents a lack
of real coherent signal in the data.

In the following Section 2 we provide the necessary formal definitions, and then
introduce the concept of distortion and explore some of its properties. Then, in
Section 3, we present an algorithm for efficiently computing the distortion of a
tree relative to a split. Finally, in Section 4, we illustrate the application of the
algorithm to two different biological data sets.

WearegratefultotheCassFieldStationoftheUniversityofCanterbury,wherewe
developed themain ideas of this paper.D.H.H.would like to thank theDFGand the
Erskine Programme for funding. J.W. would like to thank the Allan Wilson Centre
for sponsoringhis trip toNZ, andNational ScienceFoundationGrantDEB0316566
for funding the generation of the wasp data. Thanks to Pete Lockhart for providing
the buttercup trees and for many useful discussions.

2 The Distortion of a Tree Relative to a Split

We mostly follow the notation of [29]. By a partial X–tree we mean a tree T
together with a labeling map φ from some subset X ′ of X into the vertices of
T so that each vertex of degree at most 2 receives at least one label. Given an
X–split σ = A|B we may regard σ as a map from X into {0, 1} (where elements
of A are sent to 0 and elements of B are sent to 1) and so, by restricting σ to
X ′, we may view σ as a binary character for T .

Reducing Distortion in Phylogenetic Networks 153

If T is a phylogenetic tree (that is, the only vertices of T labeled by X ′ are
the leaves and these each receive exactly one label), then let h(T , σ) denote the
homoplasy score of the binary character σ on T , that is, the parsimony score of
σ, minus 1.

For any X-split σ and partial X–tree T , we define the distortion of T relative
to σ as

∂(T , σ) := min
T ′∈Phy(T)

h(T ′, σ),

where Phy(T) denotes the set of phylogenetic refinements of T , that is, the phy-
logenetic trees with the same label set as T and that contain all the splits of T .

The following result provides an interpretation of the distortion as a measure
of how much a tree needs to be modified in order to accommodate the split σ,
see Figure 1. Recall that two commonly-used ways to transform trees are by

c
1

d
1

a
0

b
0

e
0

f
0

h
1

i
0

g
1

d
1

c
1

a
0

b
0

i
0

f
0

e
0

g
1

h
1

b
0

a
0

i
0

h
1g

1

d
1

c
1

e
0

f
0

(a) (b) (c)

Fig. 1. (a) A tree T labeled by taxa X = {a, . . . , i}, with superscript 0 or 1 indicating
that the taxon lies in part A or B, of the split σ = A | B = {a, b, e, f, i} | {c, d, g,h}; we
have h(T , σ) = 3. (b) A refinement T ′ of T , with h(T ′, σ) = 1, leading to ∂(T , σ) = 1.
(c) ∂(T , σ) = h(T ′, σ) = 1 matches the transformation of T ′ into T ′′ on which σ is
compatible, using one SPR move.

SPR (‘subtree prune and regraft’) and TBR (‘tree bisection and reconnection’)
operations, which are explained further in [29,9]. In particular, the result explains
why a filter based on distortion will be a useful tool for removing false positive
splits when computing a hybridization network.

Proposition 1. For any partial X–tree T and X–split σ, the value ∂(T , σ)
equals the smallest number of (SPR or TBR) tree rearrangement operations re-
quired to transform at least one phylogenetic refinement of T into a tree that has
the split σ.

Proof. The result follows from Theorem 5.2 of Bryant [6]. �

A tree T ′ ∈ Phy(T) that minimizes h(T ′, σ) is the optimal refinement of T , with
respect to maximum parsimony, for the binary character that corresponds to σ,
in the sense of [4]. Moreover, the value of ∂(T , σ) is unaltered if one replaces in
the definition the set Phy(T) by the set of binary phylogenetic refinements of T .
Notice also that if we replace the partial X–tree T by its minimal phylogenetic

154 D.H. Huson, M.A. Steel, and J. Whitfield

refinement Tp (i.e. the partial phylogenetic X–tree whose splits consist of the
splits of T together with the trivial splits on the label set of T) then we have

∂(T , σ) = ∂(Tp, σ),

so it suffices to describe an algorithm for computing ∂ for partial phylogenetic trees.
The score ∂ has a dual ‘max-flow’ description. Let p(T , σ) denote the max-

imum number of vertex-disjoint paths that each connect an A–type leaf to a
B–type leaf. By Menger’s Theorem (see [12]) this is equal to the minimum num-
ber of vertices of T that need to be deleted from T in order to separate each
A–type leaf from each B–type leaf.

Theorem 1. For any phylogenetic X–tree and X–split, σ,

∂(T , σ) = p(T , σ)− 1.

Proof. Omitted due to space restrictions. �

Given a collection (‘profile’) of partial X–trees P = {T1, . . . , Tk} define the
distortion of P relative to σ as follows:

∂(P, σ) :=
k∑

i=1

∂(Ti, σ).

Proposition 1 implies that ∂(P, σ) is the minimum total number of transforma-
tions required on refinements of trees in P so that σ is a split of each resulting
tree. In Section 3 we present an algorithm that efficiently computes ∂(T , σ)
directly from σ and T .

One approach to super-network construction from a profile P of partial trees
would be to identify those X–splits σ for which ∂(P, σ) is less than some (ad-
justable) threshold k ≥ 0. However this problem seems in general to be in-
tractable due to the following result.

Proposition 2. The following problem is NP–hard. Given a profile P of partial
X–trees, determine whether there exists a non-trivial X–split σ with ∂(P, σ) = 0.

Proof. The result follows from the NP–hardness of ‘Split-quartet compatibility’
by [5]. �

In view of Proposition 2 an alternative approach is to use P to first construct
a large set of ‘feasible’ X–splits, and then to use ∂ to prune this set to a more
conservative subset. More concretely, we propose to first use the Z-closure algo-
rithm to compute a set of X–splits for P and then to return all splits σ with
∂(P, σ) ≤ k, for a given integer threshold k ≥ 0.

Another option for a profile P of partial X–trees – which generalizes the
consensus network approach– is, for a non-negative integer r, and real number
α ∈ [0, 1] to consider the set of X–splits defined by:

{σ : |{T ∈ P : ∂(T , σ) ≤ r}| ≥ α|P |}.

Reducing Distortion in Phylogenetic Networks 155

For r = 0 and a profile P consisting of binary phylogenetic X–trees, then using
the set of all splits contained in P , this corresponds to the consensus network
(with threshold α).

Proposition 2 indicates that this is a hard problem, if we do not restrict the
set of splits under consideration. For partial trees, one can use the Z-closure
to compute a set of candidate splits. We have implemented this approach as a
plug-in for SplitsTree [15] and discuss this in detail below.

Finally, assume we are given a profile P of (non-partial) X-trees. For small
values of r we can compute all possible X–splits σ with ∂(P, σ) ≤ r as follows:
For each tree T ∈ P , consider all O(

(
n−3

r

)
) possible ways of selecting up to

r vertex-disjoint edges in the tree, where n = |X |. By placing a change on
each selected edge, each such choice of edges defines a binary character σ with
distortion ∂(T , σ) ≤ r. Return all splits whose total score over all trees does not
exceed r.

3 Computation of the Distortion

Given a partial X–tree T and an X–split σ, the definition of ∂(T , σ) in Section 2
does not immediately lead to an algorithm. To compute this value, we describe
a modification of Sankoff’s algorithm [27,28] for computing the parsimony score
of a character on a tree.

In the following, we will assume that T is a phylogenetic X ′–tree, with X ′ ⊆
X . However, our algorithm is easily extended to the case that T is multi-labeled
(i.e., has nodes labeled by more than one taxon), and has labels on (some or all)
internal vertices.

Algorithm 2 (Distortion)
Input: A phylogenetic partial X–tree T and an X–split σ.
Output: The distortion ∂(T , σ).
Root T at the midpoint of an edge and let ρ denote the root vertex.
Initialization: For all vertices v and all a ∈ {0, 1} set:

Sv(a) =
{

0, if a = 0 and φ−1(v) ⊆ A, or a = 1 and φ−1(v) ⊆ B
∞, if a = 0 and ∅ �= φ−1(v) ⊆ B, or a = 1 and ∅ �= φ−1(v) ⊆ A.

Compute Sρ using the following recursion:
For a, b ∈ {0, 1}, and a vertex v with children w1, . . . , wk, set

Sv(a) =
∑

wi:Swi
(a)<Swi

(b)+1

Swi(a) +
∑

wi:Swi
(a)≥Swi

(b)+1

Swi(b) + Δ,

where

Δ =
{

1, if there exists wi : Swi(a) ≥ Swi(b) + 1;
0, otherwise.

The result is given by ∂(T , σ) = min{Sρ(0), Sρ(1)} − 1.

156 D.H. Huson, M.A. Steel, and J. Whitfield

Proposition 3. Let T be a partial phylogenetic X–tree and σ = A | B be an
X-split. Algorithm 2 computes the distortion ∂(T , σ) in linear time.

Proof. The algorithm considers each parent-child pair of vertices exactly once,
and hence the time requirement is linear.

We will prove the result by induction. First, consider the initialization step.
The map Sv(0) is set to 0 for every internal vertex v, and otherwise to 0 or
∞, depending on whether the label of the leaf v lies in A or B, respectively.
Vice-versa for Sv(1).

Now, consider a vertex v and assume by induction that we have correctly
computed Swi(a) for all children W = {w1, w2, . . . , wk} of v and all a ∈ {0, 1}.

Define W0 := {wi ∈W | Swi(0) < Swi(1)+1} and W1 := {wi ∈ W | Swi(0) ≥
Swi(1) + 1}.

To compute Sv(0), consider a refinement T ′ of T such that v has one or two
out-edges (depending on whether one or both of the sets WA and WB are non-
empty), e0 = (v, u0) and e1 = (v, u1), leading to one or two subtrees containing
the sets W0 and W1, respectively. We choose state 0 and state 1 on the nodes
W0∪{u0} and W1∪{u1}, respectively, and pay a penalty of 1 for a change along
edge e1, if W1 �= ∅. Note that the degree of u0 or u1 may be 2, which we allow for
purposes of the proof, as this does not alter the achievable score. We compute
Sv(1) in a similar manner. �

4 Implementation and Applications

We have implemented the above ideas as a new plug-in FilteredSuperNetwork
for the program SplitsTree4 [15]. This method takes as input a profile P of (par-
tial) X-trees and produces as output a filtered set of X–splits Σ. These splits can
then visualized as a split network using the algorithm described in [8], or used to
compute a hybridization network, using the algorithm described in [17].

The method proceeds by first computing the Z-closure Σ′ of all partial X–
splits in P and then computing the profile score of every split σ ∈ Σ′. The user
must provide two parameters. The first parameter, maxDistortion, determines
the maximal distortion ∂(T , σ) acceptable to consider σ ∈ Σ′ as being supported
by the tree T ∈ P . The second parameter, minSupportingTrees, determines
the minimum number of trees T ∈ P that are required to support σ so that σ
is present in the set of output splits Σ. Either parameter can be set by a slider
that is coupled to a histogram that shows how many splits will be present in
the output for any given choice of the parameter, given the current value of the
other parameter.

As mentioned above, an important application of the distortion filter is as a
preprocessing step in the computation of hybridization networks [17]. Given a set
of gene trees that show significant incongruencies due to hybridization events,
the goal here is to compute a hybridization network that “explains” the gene
trees. Existing approaches perform a combinatorial analysis of the set of trees
or splits to derive a network, and thus are very sensitive to false positive splits
in the data set. If the underlying hybridization scenario is relatively simple, e.g.

Reducing Distortion in Phylogenetic Networks 157

involving only isolated events, then the distortion filter can be used to remove
interfering splits.

For example, consider the set P = {T1, T2} of two gene trees on 46 Ranunculus
(buttercup) species depicted in Figure 2, based on (a) a chloroplast JSA region,
and (b) a nuclear ITS region [20]. The split network representing the set Σ
of all splits from either tree is shown in Figure 2(c). Although this dataset

(a) (b)

(c) (d)

Fig. 2. Two phylogenetic trees for 46 buttercup species, obtained (a) using a nuclear
ITS gene and (b) using a chloroplast JSA region [20]. (c) A split network displaying all
splits contained in the two trees: (d) The split network for those splits whose distortion
is at most 1 on each of the two trees.

is known to contain examples of both allopolyploid and diploid hybridization
events (Pete Lockhart, personal communication), previous attempts to compute
a corresponding hybridization network from the two trees have failed [17], due
to interfering splits.

For this dataset, it makes sense to apply the distortion filter to obtain the set

Σ′ = {σ ∈ Σ | ∂(T , σ) ≤ 1, ∀T ∈ P},

as this consists of every split that is contained in one of the trees, and is also
contained in the other, or in a tree that differs by one tree rearrangement from
the other. Figure 2(d) shows the split network for the reduced data set Σ′.

Application of a hybridization network algorithm [17] produces the network
depicted in Figure 3. The network clearly indicates that R. nivicola arises as
a (allopolyploid) hybrid between R. insignis, and R. verticallatus. Moreover,
the network indicates two further possible hybridization events, one leading to
R. enysii3 (as this involves a single lineage, probably diploid hybridization), and
the other leading to R. pinguis.

158 D.H. Huson, M.A. Steel, and J. Whitfield

Fig. 3. The hybridization network computed from the filtered set of splits

We now discuss a second example that derives from a study of the phylogeny
of microgastrine braconid wasps, a diverse and terrestrially ubiquitous group of
small insects that live parasitically as immatures within the bodies of caterpillars.
This insect group has been proposed to have diversified rapidly about 50 million
years ago into what are now recognized as the modern genera [21,31,3]. At about
this time their host insects, and the plants they live upon, were also strongly
diversifying [11].

Recent work [3] presents DNA sequence data from seven genes for a set of
45 species of wasps representing a number of microgastrine genera and related
subfamilies of wasps. In most cases not all species were successfully sequenced;
as many as six (and as few as zero) of the species were missing from a gene
tree. Mixed-model Bayesian analysis [24] of the combined seven-gene data set
resolved most phylogenetic relationships at the species level (external edges)
and among wasp subfamilies (deeply internal edges connecting the ingroup to
outgroups), but showed short and relatively poorly-supported internal edges
subtending many of the combinations of wasp genera. The internal relationships
among wasp genera approximate a “star phylogeny”.

It was thus of interest to investigate via filtered network methods whether this
star phylogeny pattern is due to conflict between splits supported by different
sets of data, or whether it represents a real lack of a coherent signal in data
patterns (splits).

We consider seven unrooted, multifurcating gene trees as independently an-
alyzed using Bayesian analysis (GTR + I + Γ substitution model for the two
mtDNA genes 16S and COI, HKY + I + Γ for the nuclear genes EF1α, LW
rhodopsin, wingless, 28S and argK). The five nuclear genes are widely believed to
provide stronger phylogenetic signal for deeper relationships than the two mtDNA
genes, which are more widely employed for inference of close species relationships.

Reducing Distortion in Phylogenetic Networks 159

(a)

(b)

(c)

Fig. 4. Effect on Z-closure network of reducing the distortion threshold. (a) With all
splits included (distortion threshold 46), (b) with distortion threshold 8, and (c) with
distortion threshold 3.

This prediction seems to be borne out by the more distantly related outgroups
(shown as all capitals in the taxon labels) more often being erroneously connected
closely to ingroups in the mtDNA trees, along with stronger diversification among
species within genera (longer edges near the periphery of the tree) than is shown
with the more slowly-evolving nuclear genes.

Figure 4 shows the effect of first applying the Z-closure method for combin-
ing partial trees into a super-network (a), and then using the distortion filter
with different thresholds. When all splits (threshold = 46, encompassing 213
splits) are allowed to contribute to the super-network, the result is a tangled
mess, Figure 4(a). Reducing the threshold to 8, Figure 4(b), results in a clear
simplification of the network (124 splits), with most of the remaining multidi-
mensionality deriving from uncertainty in relationships between outgroups and
the near star-phylogeny of ingroup generic relationships. Reducing the threshold
to 3, Figure 4(c), results in only a single remaining reticulation (from 66 splits);
at lower values even this uncertainty disappears.

160 D.H. Huson, M.A. Steel, and J. Whitfield

References

1. H.-J. Bandelt and A.W.M. Dress. A canonical decomposition theory for metrics
on a finite set. Advances in Mathematics, 92:47–105, 1992.

2. H.-J. Bandelt, P. Forster, B.C. Sykes, and M.B. Richards. Mitochondrial portraits
of human population using median networks. Genetics, 141:743–753, 1995.

3. J.C. Banks and J.B. Whitfield. Dissecting the ancient rapid radiation of micro-
gastrine wasp genera using additional nuclear genes. Molecular Phylogenetics and
Evolution, in press, 2006.

4. M. Bonet, M.A. Steel, T. Warnow, and S. Yooseph. Better methods for solving
parsimony and compatibility, 1998. Proc. RECOMB’98.

5. D. Bryant. Hunting for trees, building trees and comparing trees: theory and
method in phylogenetic analysis. Ph.D. thesis, Dept. Mathematics, University of
Canterbury, 1997.

6. D. Bryant. The splits in the neighbourhood of a tree. Annals of Combinatorics,
8(1):1–11, 1997.

7. S. Eddhu D. Gusfield and C. Langley. The fine structure of galls in phylogenetic
networks. to appear in: INFORMS J. of Computing Special Issue on Computational
Biology, 2004.

8. A.W.M. Dress and D.H. Huson. Constructing splits graphs. IEEE/ACM Transac-
tions in Computational Biology and Bioinformatics, 1(3):109–115, 2004.

9. J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., 2004.
10. S. Gadagkar, M.S. Rosenberg, and S. Kumar. Inferring species phylogenies from

multiple genes: concatenated sequence tree versus consensus gene tree. J. of Ex-
perimental Zoology (Mol. Dev. Evol.), 304B:64–74, 2005.

11. D. Grimaldi. The co-radiations of pollinating insects and angiosperms in the Cre-
taceous. Ann. Missouri Bot. Garden, 86:373–406, 1999.

12. F. Harary. Graph Theory. Series in Mathematics. Addison-Wesley, Reading MA,
1969.

13. J. Hein. Reconstructing evolution of sequences subject to recombination using
parsimony. Math. Biosci., pages 185–200, 1990.

14. B. Holland and V. Moulton. Consensus networks: A method for visualizing incom-
patibilities in collections of trees. In G. Benson and R. Page, editors, Proc. 3rd
Workshop on Algorithms in Bioinformatics WABI’03, volume 2812 of LNBI, pages
165–176. Springer, 2003.

15. D.H. Huson and D. Bryant. Application of phylogenetic networks in evolutionary
studies. Molecular Biology and Evolution, 23:254–267, 2006. Software available
from www.splitstree.org.

16. D.H. Huson, T. Dezulian, T. Kloepper, and M.A. Steel. Phylogenetic super-
networks from partial trees. IEEE/ACM Transactions in Computational Biology
and Bioinformatics, 1(4):151–158, 2004.

17. D.H. Huson, T. Kloepper, P.J. Lockhart, and M.A. Steel. Reconstruction of retic-
ulate networks from gene trees. In Proc. 9th Int’l Conf. on Research in Computa-
tional Molecular Biology RECOMB’05, 2005.

18. D.H. Huson and T.H. Kloepper. Computing recombination networks from binary
sequences. Bioinformatics, 21(suppl. 2):ii159–ii165, 2005.

19. C.R. Linder and L.H. Rieseberg. Reconstructing patterns of reticulate evolution
in plants. Am. J. Bot., 91(10):1700–1708, 2004.

20. P.J. Lockhart, P.A. McLenachan, D. Havell, D. Glenny, D.H. Huson, and U. Jensen.
Phylogeny, dispersal and radiation of New Zealand alpine buttercups: molecular
evidence under split decomposition. Ann. Missouri Bot. Garden, 88:458–477, 2001.

Reducing Distortion in Phylogenetic Networks 161

21. P. Mardulyn and J.B. Whitfield. Phylogenetic signal in the COI, 16S and 28S
genes for inferring relationships among genera of Microgastrinae (Hymenoptera:
Braconidae); evidence of a high diversification rate in this group of parasitoids.
Molecular Phylogenetics and Evolution, 12:282–294, 1999.

22. L. Nakhleh, T. Warnow, and C.R. Linder. Reconstructing reticulate evolution in
species - theory and practice. In Proc. 8th Int’l Conf. on Research in Computational
Molecular Biology RECOMB’04, pages 337–346, 2004.

23. A. Rokas, B.L. Williams, N. King, and S.B. Carroll. Genome-scale approaches to
resolving incongruence in molecular phylogenies. Nature, 425:798–804, 2003.

24. F. Ronquist and J.P. Huelsenbeck. Mrbayes3: Bayesian phylogenetic inference
under mixed models. Bioinformatics, 19:1572–1574, 2003.

25. N.A. Rosenberg. The probability of topological concordance of gene trees and
species trees. Theor. Pop. Biol., 61:225–247, 2002.

26. M.J. Sanderson. and A.C. Driskell. The challenge of constructing large phylogenetic
trees. Trends in Plant Sciences, 8:374–379, 2003.

27. D. Sankoff. Minimal mutation trees of sequences. SIAM J. of Applied Mathematics,
pages 35–42, 1975.

28. D. Sankoff and P. Rousseau. Locating the vertices of a Steiner tree in an arbitrary
metric space. Mathematical Programming, 9:240–246, 1975.

29. C. Semple and M.A. Steel. Phylogenetics. Oxford University Press, 2003.
30. D.L. Swofford. When are phylogeny estimates from molecular and morphologi-

cal data incongruent? In M.M. Miyamoto and J. Cracraft, editors, Phylogenetic
Analysis of DNA Sequences, pages 295–333. Oxford University Press, Oxford UK,
1991.

31. J.B. Whitfield. Estimating the age of the polydnavirus/braconid wasp symbiosis.
Proc. of the National Academy of Sciences USA, 99:7508–7513, 2002.

32. C.R. Woese. Bacterial evolution. Microbiol. Rev., 51:221–272, 1987.

Imputing Supertrees and Supernetworks from

Quartets

Barbara Hollan1, Glenn Conner1, Katharina T. Huber2, and Vincent Moulton2

1 Allan Wilson Centre for Molecular Ecology and Evolution
Massey University, New Zealand

2 School of Computing Sciences, University of East Anglia,
Norwich, NR4 7TJ, UK

A contemporary and sometimes contentious problem in genome phylogeny is to
reconcile the fact that an accurately reconstructed gene tree does not necessarily
correspond to a species phylogeny. Thus, in practice, species phylogenies are
commonly obtained by applying consensus tree/supertree methods to collections
of gene trees. However, such methods can suppress true conflicts in gene trees
arising from processes such as gene transfer and gene duplication/loss.

To help deal with this dilemma, Holland et al. 2004 proposed constructing
consensus networks (Holland and Moulton 2003) instead of consensus trees. This
requires that all genes are sequenced for all of the taxa in question, a shortcoming
that was circumvented in (Huson et al. 2004) where the alternative Z-closure
method for generating supernetworks as opposed to supertrees was introduced.

Here, we present a new method to generate supernetworks called Q-imputation
[Syst. Bio., to appear]. It works by sequentially inserting all missing taxa into
a set of partial gene trees, after which a consensus network is constructed. To
insert a missing taxon, a score function is used that rewards inserting the taxon
into the partial gene tree in such a way that the resulting tree has as many
quartet subtrees as possible in common with the other original gene trees.

Theoretical results, simulations, and studies of real data sets indicate that
Q-imputation and Z-closure supernetworks have complementary strengths and
weaknessess. We therefore expect that Q-imputation will provide a useful addi-
tional tool for computing supernetworks.

This work has been accepted for publication in Systematic Biology.

References

1. Holland B., K. T. Huber, V. Moulton, and P. Lockhart. 2004. Using consensus
networks to visualize contradictory evidence for species phylogeny. Mol. Bio. Evol.
21:1459–1461.

2. Holland B. and V. Moulton. 2003. Consensus Networks: A Method for Visualis-
ing Incompatibilities in Collections of Trees. Proc. 3rd Workshop on Algorithms in
Bioinformatics WABI’03, LNCS volume 2812, pp. 165–176. Springer-Verlag.

3. Huson, D., T. Dezulian, T. Klopper, and M. Steel. 2004. Phylogenetic super-
networks from partial trees. IEEE/ACM Trans. Comp. Bio. Bioinf. 1:151–158.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, p. 162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Unifying View of Genome Rearrangements

Anne Bergeron1, Julia Mixtacki2, and Jens Stoye3

1 Comparative Genomics Laboratory, Université du Québec à Montréal, Canada
bergeron.anne@uqam.ca

2 International NRW Graduate School in Bioinformatics and Genome Research,
Universität Bielefeld, Germany

julia.mixtacki@uni-bielefeld.de
3 Technische Fakultät, Universität Bielefeld, Germany

stoye@techfak.uni-bielefeld.de

Abstract. Genome rearrangements have been modeled by a variety of
operations such as inversions, translocations, fissions, fusions, transposi-
tions and block interchanges. The double cut and join operation, intro-
duced by Yancopoulos et al., allows to model all the classical operations
while simplifying the algorithms. In this paper we show a simple way to
apply this operation to the most general type of genomes with a mixed
collection of linear and circular chromosomes. We also describe a graph
structure that allows simplifying the theory and distance computation
considerably, as neither capping nor concatenation of the linear chromo-
somes are necessary.

1 Introduction

The problem of sorting multichromosomal genomes can be stated as: Given two
genomes A and B, the goal is to find a shortest sequence of rearrangement
operations that transforms A into B. The length of such a shortest sequence
is called the distance between A and B. Clearly, the solutions depend on what
kind of rearrangement operations are allowed.

Given their prevalence in eukaryotic genomes [1], the usual choices of operations
include translocations, fusions, fissions and inversions. However, there are some
indications that transpositions should also be included in the set of operations
[2], but the lack of theoretical results showing how to include transpositions in the
models led to algorithms that simulate transpositions as sequences of inversions.

In [3], the authors describe a general framework in which circular and linear
chromosomes can coexist throughout evolving genomes. They model inversions,
translocations, fissions, fusions, transpositions and block interchanges with a
single operation, called the double cut and join operation. This general model
accounts for the genomic evidence of the coexistence of both linear and circular
chromosomes or plasmids in many genomes [4,5].

In this paper, we present a simplified formalization of genomes with coexisting
circular and linear chromosomes, and a formal treatment of sorting such genomes
by the double cut and join operation. We introduce a very simple data structure,

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 163–173, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

164 A. Bergeron, J. Mixtacki, and J. Stoye

the adjacency graph, that is symmetric with respect to the two genomes under
study and is closely related to the visual picture of the genomes themselves. We
also show how the algebraic simplicity of the double cut and join operation yields
efficient sorting algorithms that can be tailored to optimize the use of certain
types of operations.

2 Notes on Graphs with Vertices of Degree One or Two

An essential ingredient in genome rearrangment studies are graphs where each
vertex has degree one or two. Here we recall some of their properties.

Let G be a graph where each vertex has degree one or two. We call a vertex
of degree one external and a vertex of degree two internal. An internal vertex
connecting edges p and q is denoted by the unordered multiset {p, q} and an
external vertex incident to an edge p by the singleton set {p}.

It follows immediately from the definition of G that any connected component
of G is either circular, consisting only of internal vertices, or it is linear, consisting
of internal vertices bounded by two external vertices, one at each end. We denote
circular components as cycles and linear components as paths. A cycle or path
is even if it has an even number of edges, otherwise it is odd.

Example 1. The following graph has four vertices of degree one and six vertices
of degree two. It has two cycles and two paths, one of which is even and one of
which is odd.

� � � � �� � � � �
Definition 1. The double cut and join (DCJ) operation acts on two vertices u
and v of a graph with vertices of degree one or two in one of the following three
ways:

(a) If both u = {p, q} and v = {r, s} are internal vertices, these are replaced by
the two vertices {p, r} and {s, q} or by the two vertices {p, s} and {q, r}.

(b) If u = {p, q} is internal and v = {r} is external, these are replaced by {p, r}
and {q} or by {q, r} and {p}.

(c) If both u = {q} and v = {r} are external, these are replaced by {q, r}.

In addition, as an inverse of case (c), a single internal vertex {q, r} can be
replaced by two external vertices {q} and {r}.

Figure 1 illustrates the definition.

The DCJ operation, although defined locally on a pair of vertices, has global
effects on the connected components of the graph. In order to describe these, we
use a terminology essentially borrowed from biology.

First, consider Figure 2. If the two vertices are contained in two different paths
and at least one of them is internal, then these paths exchange their ends, which

A Unifying View of Genome Rearrangements 165

(a)�

�

�

�

�
�

	

��p q

r s

�
�

	

��p r

s q

�
�

	

��p s

q r

��

������ �����	

(b)�

�

�

�

�
�

	

��p q

r

�
�

	

��p r

q

�
�

	

��p

q r

��

������ �����	

(c)�

�

�

�

�
�

	

��q

r

�
�

	

�� r

q

�
�

	

�

q r

��

������ �����	

Fig. 1. Definition of the double cut and join operation. Note that the operations be-
tween the two top graphs of part (c) are the identity.

is called a path translocation. If both are external vertices of different paths, as
in Figure 2 (c), then these paths are merged, called a path fusion. The inverse
of a path fusion is a path fission.

The case shown in Figure 3, where both linear and circular components are
mixed, is more intricate. If the DCJ operation acts on vertices contained in the
same path and at least one of them is internal, then the intermediate part of the
path is either reversed, called an inversion, or spliced out producing a new cycle,
called an excision. The inverse operation of an excision is called an integration.
If both are external vertices of the same path, as in Figure 3 (c), then a cycle is
formed, called a circularization. Its opposite is a linearization.

If the vertices are contained in the same cycle, or in two different cycles, as shown
in Figure 4, then we have either an inversion, a cycle fusion or a cycle fission.

The following lemma is an immediate consequence of the enumeration of all
possible cases in Figures 2, 3 and 4:

Lemma 1. The application of a single DCJ operation changes the number of
circular or linear components by at most one.

We will see in the next two sections how graphs with vertices of degree one or two
appear in two natural ways when modeling genomes and genome rearrangements.

3 Genes, Chromosomes and Genomes

In this section we introduce our notation of genomes and how they are modeled
as graphs with vertices of degree one or two.

A gene is an oriented sequence of DNA that starts with a tail and ends with a
head. These are called the extremities of the gene. The tail of a gene a is denoted
by at, and its head is denoted by ah. In biology, the tail of a gene is often called
its 3’ end and the head its 5’ end.

Two consecutive genes do not necessarily have the same orientation, since DNA
is double stranded and the complementary strands are read by the transcription
machinery in opposite direction. Thus an adjacency of two consecutive genes a
and b, depending on their respective orientation, can be of four different types:

{ah, bt}, {ah, bh}, {at, bt}, {at, bh}.

166 A. Bergeron, J. Mixtacki, and J. Stoye

(a)�

�

�

�

�
�

	

��p q

r s

�
�

	

��p r

s q

�
�

	

��p s

q r

��

������ �����	

(b)�

�

�

�

�
�

	

��p q

r

�
�

	

��p r

q

�
�

	

��p

q r

��

������ �����	

(c)�

�

�

�

�
�

	

��q

r

�
�

	

�� r

q

�
�

	

�

q r

��

������ �����	

Fig. 2. The DCJ operation applied on one or two paths yields path translocations,
fusions and fissions

(a)�

�

�

�

�
�

	

� �p q r s

�
�

	

� �p r q s

�
�

	

���
 ��p s

q r

��

������ �����	

(b)�

�

�

�

�
�

	

� �p q r

�
�

	

� �p r q

�
�

	

���
 ��p

q r

��

������ �����	

(c)�

�

�

�

�
�

	

� �q r

�
�

	

� �r q

�
�

	

��
 ��q r

��

������ �����	

Fig. 3. The DCJ operation applied on a single path or a path and a cycle yields
inversions, excisions, integrations, circularizations and linearizations

�

�

�

�

�
�

	

���
 ��p q

rs

�
�

	

���
 ��p r

s q

�
�

	

���
 ���
 ��p s

q r

��

������ �����	

Fig. 4. The DCJ operation applied on a single cycle or on two cycles yields inversions,
cycle fusions and fissions

An extremity that is not adjacent to any other gene is called a telomere, repre-
sented by a singleton set {ah} or {at}.

A genome is a set of adjacencies and telomeres such that the tail or the head
of any gene appears in exactly one adjancency or telomere.

Given a genome, one reconstructs its chromosomes by representing the telom-
eres and adjacencies as vertices and then joining for each gene its tail and its head
by an edge.Note that the genome graph obtained thisway is a graphwith vertices of
degree one or two. The connected paths and cycles are chromosomes of the genome
which are either linear or circular. Linear chromosomes are bounded by telomeres.

A Unifying View of Genome Rearrangements 167

Chromosomes are often represented by lists of gene labels. These lists are ob-
tained by choosing a telomere in a linear chromosome, or an arbitrary gene in
a circular chromosome, and then enumerating the gene labels along the compo-
nent, using positive signs to indicate genes that are read from tail to head and
negative signs to indicate genes that are read from head to tail. For linear chro-
mosomes, the enumeration stops at its other telomere, for circular chromosomes
when the initial gene appears for the second time in the list. Positive signs may
be omitted where convenient.

Example 2. Let

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}

be a genome with seven genes {a, b, c, d, e, f, g}. The corresponding genome graph
is the following:

� � � � �� � � �at ah ct ch dtdh
bt

bh et

eh

ft fh gt gh

One possible list representation of A is {(a, c,−d), (b, e, b), (f, g)}.
Since the chromosome graph is a graph with vertices of degree one or two, the

double cut and join operation defined in Section 2 can be applied to these graphs.
This operation is the same as defined, in different notation, by Yancopoulos et
al. [3].

We can now formulate the problem that we consider:

The DCJ Sorting and Distance Problem. Given two genomes A and B
defined on the same set of genes, find a shortest sequence of DCJ operations
that transforms A into B. The length of such a sequence is called the DCJ
distance between A and B, denoted by dDCJ (A, B).

Example 3. Consider the following two genomes that are defined over the set of
genes {a, b, c, d, e, f, g}:

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}
B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, ft}}

Sorting A into B can, for example, be done in the following five steps, where the
affected gene extremities are underlined:

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}
{{at}, {ah, bt}, {ch, dh}, {dt}, {bh, et}, {eh, ct}, {ft}, {fh, gt}, {gh}}
{{et}, {ah, bt}, {ch, dh}, {dt}, {bh, at}, {eh, ct}, {ft}, {fh, gt}, {gh}}
{{et}, {ah, bt}, {ch, dt}, {dh}, {bh, at}, {eh, ct}, {ft}, {fh, gt}, {gh}}
{{et}, {ah, bt}, {ch, dt}, {dh}, {bh, at}, {eh}, {ct}, {ft}, {fh, gt}, {gh}}

B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, ft}}

The DCJ distance between A and B is dDCJ(A, B) = 5.

168 A. Bergeron, J. Mixtacki, and J. Stoye

4 The Adjacency Graph

In order to solve the DCJ Distance Problem stated above, another graph of the
type discussed in Section 2 proves to be useful, this time defined on the pair of
genomes A and B.

Definition 2. The adjacency graph AG(A, B) is a graph whose set of vertices
are the adjacencies and telomeres of A and B. For each u ∈ A and v ∈ B there
are |u ∩ v| edges between u and v.

Example 4. The adjacency graph of our two genomes

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}
B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt}, {gh, ft}}

is the following:

� � � � � � � � �at ahct ch dh dt bt eh et bh ft fh gt gh

� � � � � � � � �
ahbt bh at ct ch dt dh et eh fh gt gh ft

����������������

�
�

�
�

��

����������������

�
�

�
�

��

�
�

�
�

��

Obviously, every vertex in the adjacency graphhasdegree one or two, therefore it
is aunionof cycles andpaths.Since thegraph isbipartite, all cycleshaveeven length.

The adjacency graph can easily be constructed as shown in Algorithm 1. Let
N be the number of genes in genomes A and B, respectively. Then Algorithm 1
takes O(N) time and uses O(N) space if the genomes are stored in a data
structure where, for each gene extremity, one has constant time access to the
adjacency or telomere that it is contained in. For example, this can be a table
with two rows of length at most 2N storing the adjacencies and telomeres of the
genome, and another table with two rows of length N storing for each gene in
which columns of the first table to find its head and its tail. For genome

Algorithm 1 (Construction of the adjacency graph)
1: create a vertex for each adjacency and each telomere in genomes A and B
2: for each adjacency {p, q} in genome A do
3: create an edge connecting {p, q} and the vertex of genome B that contains p
4: create an edge connecting {p, q} and the vertex of genome B that contains q
5: end for
6: for each telomere {p} of genome A do
7: create an edge connecting {p} and the vertex of genome B that contains p
8: end for

A Unifying View of Genome Rearrangements 169

Table 1. Table storing the adjacencies and
telomeres of genome A. Adjacencies have
two entries, telomeres just one.

1 2 3 4 5 6 7 8 9

first at ah ch dt bh eh ft fh gh

second – ct dh – et bt – gt –

Table 2. Table storing for each
gene in A the location of its head
and its tail in Table 1

a b c d e f g

head 2 5 3 3 6 8 9
tail 1 6 2 4 5 7 8

A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}}

from the previous example, the two tables are shown in the following.

5 Sorting by DCJ Operations

As we will see in this section, the adjacency graph allows a simple characteriza-
tion of many of the properties of sorting by DCJ operations.

Lemma 2. Let A and B be two genomes defined on the same set of N genes,
then we have

A = B if and only if N = C + I/2

where C is the number of cycles and I the number of odd paths in AG(A, B).

Proof. Let a be the number of adjacencies and t the number of telomeres in
A = B, then N = a+ t/2. The adjacency graph AG(A, B) has C = a cycles and
I = t odd paths, hence N = a + t/2 = C + I/2.

To show that N = C + I/2 implies A = B, assume an adjacency graph
G = AG(A, B) such that N = C + I/2. Let a be the number of adjacencies and
t the number of telomeres in A, then N = a + t/2. Each cycle in G contains at
least one adjacency of A, thus C ≤ a. Each odd path in G contains exactly one
telomere of A, thus I ≤ t. From C + I/2 = N = a + t/2 it follows that C = a
and I = t. Thus all cycles have length two and all odd paths have length one,
which is only possible if the genomes are equal. ��

When a DCJ operation is applied to genome A, it acts on the adjacencies and
telomeres of genome A. The same DCJ operation acts also on the adjacency
graph since the adjacencies and telomeres of genome A are vertices of this graph.
Since the adjacency graph is a union of paths and cycles, all the tools and
terminology of Section 2 can be used.

In Lemma 1, we showed that the number of circular and linear components
can change by at most one when a DCJ operation is applied to a graph that
is a union of paths and cycles. In the case of adjacency graphs we have also
constraints on the possible changes in the number of odd paths:

Lemma 3. The application of a single DCJ operation changes the number of
odd paths in the adjacency graph by –2, 0, or 2.

170 A. Bergeron, J. Mixtacki, and J. Stoye

Algorithm 2 (Greedy sorting by DCJ)
1: for each adjacency {p, q} in genome B do
2: let u be the element of genome A that contains p
3: let v be the element of genome A that contains q
4: if u �= v then
5: replace u and v in A by {p, q} and (u \ {p}) ∪ (v \ {q})
6: end if
7: end for
8: for each telomere {p} in genome B do
9: let u be the element of genome A that contains p

10: if u is an adjacency then
11: replace u in A by {p} and (u \ {p})
12: end if
13: end for

Proof. Consider operations that are path translocations, fusions or fissions
(Figure 2). Two odd paths can be either transformed into two odd paths, or
into one or two paths of even length. Path(s) of even length(s) can be either
transformed into path(s) of even length, or into two paths of odd length. One
even and one odd path are always transformed into one even and one odd path.
Finally, splitting one odd path always yields an even and an odd path.

Inversions, excisions, integrations, circularizations and linearizations (Fig-
ure 3) do not change the number of odd paths since all cycles have even length.
No paths are involved in the DCJ operations of Figure 4. ��
Lemma 3 allows to derive the following lower bound for the DCJ distance:

Lemma 4. Let A and B be two genomes defined on the same set of N genes,
then we have

dDCJ(A, B) ≥ N − (C + I/2)

where C is the number of cycles and I the number of odd paths in AG(A, B).

Proof. Since none of the cases of the DCJ operation modifies the number of
cycles and odd paths simultaneously, this follows immediately from Lemmas 1,
2 and 3. ��
The adjacency graph is also very useful when one wants to find an optimal
sequence of sorting operations.

Observe that any pair of edges in the adjacency graph that connect two dif-
ferent vertices of genome A with an adjacency {p, q} in genome B can be trans-
formed by a single DCJ operation into a cycle of length two, plus the remaining
structure, reduced by the two edges. This operation always increases C + I/2 by
one since C is increased by one and we have already seen that no DCJ operation
can simultaneously change C and I.� � � �

� � � � � ��
�

��

 ⇒

A Unifying View of Genome Rearrangements 171

Now assume that all adjacencies of genome B are contained in cycles of length
two. There might still be pairs of telomeres of B that form an adjacency in A.
These adjacencies can be split into two telomeres, thus creating two odd paths
of length one each, increasing I by two.� � �

� � � �

�
�

�� ⇒

Pseudocode for this greedy sorting procedure is given in Algorithm 2. Note
that the adjacency graph does not need to be constructed explicitly if the
genomes are stored in the way sketched at the end of Section 4. Interestingly,
the algorithm is optimal:

Theorem 1. Let A and B be two genomes defined on the same set of N genes,
then we have

dDCJ(A, B) = N − (C + I/2)

where C is the number of cycles and I the number of odd paths in AG(A, B).
An optimal sorting sequence can be found in O(N) time by Algorithm 2.

Proof. Lemma 4 together with the fact that Algorithm 2 increments in each
iteration either C by one or I by two prove the distance formula.

The linear time complexity follows from the fact that our genome representa-
tion allows to find and perform each sorting operation in constant time and the
DCJ distance is never larger than N . ��

Remark 1. It is worth mentioning that our distance formula is equivalent to the
result dDCJ = b−c given by Yancopulos et al. [3], where b is the number of break-
points and c is the number of cycles of the breakpoint graph after appropriate
capping of the linear chromosomes.

To see this, let lA and lB be the number of linear chromosomes in genomes A
and B, respectively. Then the total number of breakpoints, as defined in [3], is
b = N + lB + aa = N + lA + bb where aa is the number of even paths that start
and end in genome A and bb is the number of even paths that start and end in
genome B. The number of cycles is c = C+I+E where C is the number of cycles,
I the number of odd paths and E the number of even paths in the adjacency
graph AG(A, B) as defined in this paper. Obviously E = aa + bb. Moreover,
each linear chromosome is associated to two path ends, thus the number of
linear chromosomes equals the number of paths, lA + lB = I + E. Together this
implies that 2b = 2N + 2E + I, giving b− c = N − C − I/2.

6 Conclusion

We have shown that, with a suitable representation, it is possible to model all
rearrangement operations on the most general genome structure that mixes both
circular and linear chromosomes.

172 A. Bergeron, J. Mixtacki, and J. Stoye

The basic tools for this representation are graphs that are unions of paths and
cycles. Surprisingly, this type of graph can be used for representing genomes, for
computing the DCJ distance, and for suggesting rearrangement scenarios. This
variety of uses suggests many interesting problems.

The first one is to investigate formal properties of graphs that are unions of
paths and cycles, with respect to the DCJ operation. For example, the cyclic
organization of these operations is a striking feature of Figures 2, 3 and 4 and
offers new ways to classify rearrangement operations. These graphs also give
a firm starting point to explore difficult rearrangement problems that involve
either gene duplications [6] or missing information about the actual order of
genes in a genome [7].

Last, but not the least, adding constraints on the type of allowed operations
often yields equations of the form

d(A, B) = dDCJ (A, B) + t

where t represents the additional cost of not resorting to DCJ operations. For
example, the Hannenhalli-Pevzner distance, that allows only translocations and
inversions on linear chromosomes [8], can be recast as avoiding all DCJ op-
erations that create a circular chromosome in either genome A or B. These
operations live only on Figure 2 and the upper half of Figure 3.

Another kind of restriction has recently been studied in [9], where operations
are fusions and fissions between circular unsigned chromosomes, and block in-
terchanges within a circular unsigned chromosome. The authors assign equal
weight to the three operations, even if a block interchange requires two DCJ op-
erations, and propose an O(N2) time algorithm to sort these circular genomes.
Their algorithm first applies fusions to both source and target genome, until
they have two genomes whose chromosomes have equal gene content. These fu-
sions can be identified in linear time by a search of the adjacency graph. They
then sort the resulting genomes by block interchanges using an O(N2) time al-
gorithm described in [10]. This can be done in the same time complexity, but
with elementary means, using a modification of our Algorithm 2 where every
intermediate chromosome created by a fission is immediately re-absorbed in the
next step, such that only block interchanges are performed. The modification
is to search, in the newly created circular chromosomes, a pair of genes that
are adjacent in the target genome, but on different chromosomes in the source
genome.

References

1. Sankoff, D., Mazowita, M.: Stability of rearrangement measures in the comparison
of genome sequences. In Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner,
P., Waterman, M., eds.: Proceedings of RECOMB 2005. Volume 3500 of LNBI.,
Springer Verlag (2005) 603–614

2. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its ap-
plications to genome comparison. In Warnow, T., Zhu, B., eds.: Proceedings of
COCOON 2003. Volume 2697 of LNCS., Springer Verlag (2003) 68–79

A Unifying View of Genome Rearrangements 173

3. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permuta-
tions by translocation, inversion and block interchange. Bioinformatics 21 (2005)
3340–3346

4. Casjens, S., Palmer, N., van Vugt, R., Huang, W.M., Stevenson, B., Rosa, P.,
Lathigra, R., Sutton, G., Peterson, J., Dodson, R.J., Haft, D., Hickey, E., Gwinn,
M., White, O., Fraser, C.M.: A bacterial genome in flux: The twelve linear and
nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease
spirochete Borrelia burgdorferi. Mol. Microbiol. 35 (2000) 490–516

5. Volff, J.N., Altenbuchner, J.: A new beginning with new ends: Linearisation of cir-
cular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186 (2000)
143–150

6. Zheng, C., Lenert, A., Sankoff, D.: Reversal distance for partially ordered genomes.
Bioinformatics 21 (2005) i502–i508 (Proceedings of ISMB 2005).

7. El-Mabrouk, N.: Genome rearrangements with gene families. In Gascuel, O., ed.:
Mathematics of Evolution and Phylogeny. Oxford University Press (2005) 291–320

8. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Proceedings of FOCS 1995, IEEE Press (1995)
581–592

9. Lu, L., Huang, Y.L., Wang, T.C., Chiu, H.T.: Analysis of circular genome re-
arrangement by fusions, fissions and block-interchanges. BMC Bioinformatics 7
(2006)

10. Lin, Y.C., Lu, C.L., Chang, H.Y., Tang, C.Y.: An efficient algorithm for sorting by
block-interchanges and its application to the evolution of vibrio species. J. Comp.
Biol. 12 (2005) 102–112

Efficient Sampling of Transpositions and

Inverted Transpositions for Bayesian MCMC

István Miklós1,3, Timothy Brooks Paige2, and Péter Ligeti3,4

1 eScience Regional Knowledge Center, Eötvös Loránd University
1117 Budapest, Pázmány Péter sétány 1/c, Hungary

miklosi@ramet.elte.hu
2 Box 786, Amherst College, Amherst MA, 01002 USA

tbpaige@gmail.com
3 Bioinformatics group, Alfréd Rényi Institute of Mathematics, Hungarian Academy

of Sciences
1053 Budapest, Reáltanoda u. 13-15, Hungary

{miklosi, ligeti}@renyi.hu
4 Department of Computer Science, Eötvös Loránd University

1117 Budapest, Pázmány Péter sétány 1/c, Hungary
turul@cs.elte.hu

Abstract. The evolutionary distance between two organisms can be de-
termined by comparing the order of appearance of orthologous genes in
their genomes. Above the numerous parsimony approaches that try to
obtain the shortest sequence of rearrangement operations sorting one
genome into the other, Bayesian Markov chain Monte Carlo methods
have been introduced a few years ago. The computational time for con-
vergence in the Markov chain is the product of the number of needed
steps in the Markov chain and the computational time needed to per-
form one MCMC step. Therefore faster methods for making one MCMC
step can reduce the mixing time of an MCMC in terms of computer
running time.

We introduce two efficient algorithms for characterizing and sampling
transpositions and inverted transpositions for Bayesian MCMC. The first
algorithm characterizes the transpositions and inverted transpositions by
the number of breakpoints the mutations change in the breakpoint graph,
the second algorithm characterizes the mutations by the change in the
number of cycles. Both algorithms run in O(n) time, where n is the size of
the genome. This is a significant improvement compared with the so far
available brute force method with O(n3) running time and memory usage.

1 Introduction

The differences between the order of genes in two genomes have been used as
a measurement of evolutionary distance already more than six decades ago [1].
The rediscovery of inversion distance is dated back to the eighties [2,3], and since
then a large set of papers on optimization methods for genome rearrangement
problems has been published. However, except the case of sorting signed permu-
tations by inversions [4,5,6,7,8,9] or by translocations [10], only approximations

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 174–185, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Sampling Transpositions and Inverted Transpositions 175

[11,12,13,14,15] and heuristics [16] exist. Most of the methods concerning with
more types of mutations either penalize all the mutations with the same weight
[14], or exclude a whole set of possible mutations due to a special choice of
weights [13]. (A nice exception can be found in [17].)

Above the numerous parsimony approaches that try to obtain the shortest se-
quence of rearrangement operations sorting one genome into the other, Bayesian
Markov chain Monte Carlo methods have been introduced a few years ago. They
define different models where genomes can evolve by reversals [18,19,20], rever-
sals and translocations [21] or reversals, transpositions and inverted transposi-
tions [22,23]. It has been shown that transpositions and inverted transpositions
could happen in unichromosomal genomes [24], therefore it is natural to incorpo-
rate such events into the Bayesian model. So far the available computer program
for the model accommodating transpositions and inverted transpositions used
O(n3) memory and had O(n4) running time per MCMC step [23]. Though this
memory usage and running time allowed the analysis of short genomes (for exam-
ple, Metazoan mithochondrial genomes), the program suffered memory problems
with large genomes containing hundreds of genes.

We introduce two algorithms for characterizing and sampling transpositions
and inverted transpositions. The first algorithm characterizes the mutations by
the number of breakpoints they remove and samples from a distribution in which
breakpoint-removing mutations are preferred. The second algorithm character-
izes the mutations by the change in the number of cycles in the graph of desire
and reality and samples from a distribution in which cycle-increasing mutations
are preferred. Both algorithms run in O(n) time where n is the length of the
genome. Since linear running time algorithms for characterizing and sampling
reversals have already been developed earlier [24,23], an MCMC step in the re-
versals, transpositions and inverted transpositions accommodating model takes
only O(n2) running time (the sampling algorithm might be repeated O(n) times
in an MCMC step), and needs only linear memory with these algorithms.

2 Preliminaries

2.1 Mathematical Description of Genome Rearrangement

Genomes are assumed to have the same gene content, and each gene is repre-
sented in one copy in both genomes. Gene orders are described as signed permu-
tations, numbers correspond to genes, signs represent the reading direction of
genes. Since mutations are actions on the signed permutation group, transform-
ing a genome π1 to genome π2 is equivalent with sorting π−1

2 π1 to the identical
permutation, and thus, we are going to talk about sorting permutations instead
of transforming one into another. By following the convention, a signed permu-
tation of length n is represented as an unsigned permutation of length 2n, +i is
replaced by 2i−1, 2i, and −i is replaced by 2i, 2i−1. This unsigned permutation
is then framed to 0 and 2i + 1. To properly mimic the signed permutation case,
only segments [2i + 1, 2j] are allowed to mutate in the unsigned representation.

176 I. Miklós, T.B. Paige, and P. Ligeti

The graph representation of a signed permutation is called graph of reality
and desire, whose vertexes are the numbers from 0 to 2n + 1, and edges are the
reality and desire edges. The reality edges connect every second position in the
permutation starting with 0. Mutations act on the reality edges; a reversal acts
on two reality edges, while a transposition or an inverted transposition on three
ones. The desire edges are arcs connecting 2i with 2i+1 for each i. A desire edge
is unoriented if it spans even number of points otherwise it is oriented. Since each
vertex has a degree of 2, the graph of desire and reality can be unequivocally
decomposed into cycles. A reality edge is a breakpoint if its cycle is longer than 2.

The identity permutation has 0 breakpoints and n + 1 cycles, all other muta-
tions have more breakpoints and less cycles. Therefore the sorting of a permu-
tation is equivalent with increasing the number of cycles to n + 1 or decreasing
the number of breakpoints to 0. Mutations can be characterized by the num-
ber of breakpoints they remove or the change in the number of cycles. We will
talk about e.g., -3-b-transpositions meaning that they remove 3 breakpoints or
+1-c-inversions, which increase the number of cycles by 1.

2.2 Stochastic Modeling and Bayesian MCMC

Time-continuous Markov models have been the standard approaches for stochas-
tic modeling of molecular evolution. Unlike the case of nucleic acid substitution
models, modeling genome rearrangements is computationally demanding and no
analytical solutions are known for transition probabilities. What we can calculate
is the likelihood of a trajectory, which is the probability that a given sequence of
mutations happened in a time span conditional on a set of parameters describing
the model [22,23,24].

To sample trajectories from the posterior distribution, we apply Bayesian
Markov chain Monte Carlo (MCMC) [25,26] which is a random walk on the pos-
sible trajectories, and whose stationary distribution is the posterior distribution
of trajectories. The random walk is constructed in two steps. In the first step,
a new trajectory is drawn from a proposal distribution, and in the second step,
the discrepancy between the proposal and the target distribution is corrected by
accepting the proposal with probability

min
{

1 ,
P (X |Y)π(Y)
P (Y |X)π(X)

}
(1)

where P is the proposal distribution, π is the target one, X is the actual state
of the chain, and Y is the proposal, and the chain remains in state X with
the complement probability [25,27]. The proposal step replaces a part of the
trajectory. The new sub-trajectory is obtained step by step, each mutation is
drawn from a distribution that mimics the target distribution we would like to
sample from, and the new proposal is independent from the old sub-trajectory.

The mixing of the Markov chain depends on how well the proposal distribution
can mimic the target distribution. When proposing a new sub-trajectory step
by step, published methods measure the departure of the actual rearrangement
from the rearrangement where the sub-trajectory must arrive to, and propose

Efficient Sampling Transpositions and Inverted Transpositions 177

mutations decreasing the measurement of the departure (’good’ mutations) with
high probability and propose other ones (’bad’ mutations) with low probability.
This philosophy seems to be essential since random mutations would reach the
target rearrangement with a very small probability.

Since there are 3
(
n+1

3

)
transpositions and inverted transpositions and

(
n+1

2

)
reversals, an algorithm that spends only constant time with each possible mu-
tation to decide its goodness will already run in Ω(n3) time. Therefore it is
not a trivial problem how to characterize and sample mutations in less time.
Below we show two algorithms characterizing and sampling transpositions and
inverted transpositions in linear time, a very simple for breakpoints and a more
sophisticated for cycles.

3 Characterizing and Sampling Transpositions and
Inverted Transpositions

Figure 1 shows the two decision trees that the below described algorithms use to
sample random mutations. At an internal node, a random decision is made only if
both subtrees are non-empty. If one of the subtrees is empty, then the algorithm
chooses the other subtree with probability 1. For example, in Figure 1 a), if
there is no transposition or inverted transposition decreasing the number of
breakpoints by 3, and there is no reversal decreasing the number of breakpoints
by two, then there is no random decision at the root of the tree, the algorithm
will go to the right subtree with probability 1.

3.1 Sampler Based on the Change of Breakpoints

The first algorithm characterizes the mutations with the number of breakpoints
the mutation removes. The algorithm calculates in linear time the number of

Fig. 1. Decision trees used by the introduced algorithms. T stands for transpositions
and inverted transpositions, R stands for reversals. Numbers on the edges means prob-
abilities, p is between 0.5 and 1. In practice, p = 0.8 gives a proposal distribution which
is reasonably close to the target distribution, acceptance ratio is about 20 −−30%.

178 I. Miklós, T.B. Paige, and P. Ligeti

transpositions and inverted transpositions for each category in Figure 1 a),
namely -3-b, -2-b, -1-b and “rest” mutations, and it is able to sample from
a uniform distribution for each category also in linear time.

Preprocessing. For each i, we calculate b(i), which is the number of break-
points after position i; od(i), which is the number of oriented desire edges going
from the left end of a reality edge to the right after position i, and ud(i), which
is the number of unoriented desire edges going from the left end of a reality
edge to the right after position i. These numbers can be trivially calculated by
traversing the permutation from right to left.

Counting the mutations. For each category and reality edge, we calculate in
O(1) time the number of mutations that fall in the given category and their left-
most reality edge is the given edge on which they act. Since there are at most three
such mutations for categories -3-b and -2-b —see Figure 2—and these cases can be
checked in O(1) time for each reality edge, this is the trivial part of the algorithm.

Fig. 2. Configurations on which a mutation can decrease the number of breakpoints.
a)-c): 3-cycles on which if a) a transposition, b) an inverted transposition to the left
or c) an inverted transposition to the right acts, the number of breakpoints decreases
by 3. d) The three possible cases on which a transposition can decrease the number
of breakpoints by two. Similarly for inverted transpositions, there are 3-3 cases de-
rived from the 3-long cycles showed at b) and c). e) The three possible situation on
which a transposition can decrease the number of breakpoints by one. The empty re-
ality edge must be a breakpoint. Similar configurations can be obtained for inverted
transpositions.

The maximum number of possible -1-b-transpositions and inverted transpo-
sitions is O(n) for each reality edge. These mutations fall into three categories,
see Fig 2. e). Having known b(i), od(i) and ud(i) in advance, the number of
mutations can be calculated in constant time for each category. For example,
for the third case in Fig 2 e), it is ud(i) minus the possible zero, one or two
mutations which are actually -2-b- or -3-b-transpositions.

The number of “rest” mutations can be easily calculated if the number of
-3-b, -2-b and -1-b-mutations are subtracted from the number of all possible
mutations, which is

(
n+1−i

2

)
each for transpositions, inverted transpositions to

the right and inverted transpositions to the left.

Efficient Sampling Transpositions and Inverted Transpositions 179

Sampling from each category. Since we know the number of possible muta-
tions for each category and each leftmost reality edges, we first sample the leftmost
reality edge from the properly weighted distribution. For -3-b and -2-b-mutations,
the number of mutations having a fixed leftmost reality edge is constant, and the
algorithm can choose a random one from this constant size set.

To sample from the O(n) possible -1-b-transpositions or inverted transpo-
sitions, the algorithm first chooses one of the three possible sub-cases for the
selected leftmost reality edge, and depending on the chosen sub-case, it chooses
a breakpoint, an oriented or unoriented desire edge that defines the correspond-
ing mutation.

To sample from the “rest” mutations, the algorithm first chooses a rightmost
reality edge after fixing the leftmost reality edge. It calculates the number of
“rest” mutations for each possible rightmost reality edge. This is the number of
all possible mutations minus the number of -3-b, -2-b and -1-b mutations. The
subtracted numbers can be calculated in O(1) time, hence the number of “rest”
mutations for each rightmost edge. After this, the algorithm chooses a rightmost
edge from the properly weighted distribution, and finally, the algorithm chooses
one from the O(n) possible middle reality edges, given the fixed leftmost and
rightmost edges.

3.2 Sampler Based on the Change of Cycles

The second algorithm characterizes the mutations by the change in the number of
cycles. Though this algorithm does not tell the exact number of mutations falling
into a given class, it does tell for each category and for each reality edge whether
or not there exists a mutation that falls into the given category and its leftmost
edge is the given one. This is enough for using the decision tree in Figure 1 b)
and for sampling from a distribution for which the sampling probabilities can
be calculated. (We would like to mention for non-experts that the ability of
sampling from a distribution does not imply that sampling probabilities can be
calculated, see for example [28,26,24].)

It is easy to show that cycle-increasing mutations act on one cycle. If three re-
ality edges are in one cycle, they are in one of the eight possible configurations in
Table 1. The idea of the algorithm is that for each configuration and reality edge,
the algorithm decides whether or not there are other two reality edges to the right
being in the given configuration with the third edge. If so, then the reality edge
goes to a set from which the algorithm chooses a random leftmost reality edge.
Once the algorithm has chosen the mutation type and the leftmost reality edge, it
decides for each reality edge on the right hand side of the leftmost edge whether
or not it can be together with a rightmost reality edge in a configuration that is
good for the given mutation type. After choosing a random middle edge from the
ensemble of possible middle edges, the algorithm finally chooses a random good
leftmost edge. This method also takes only O(n) time and memory.

Preprocessing. The algorithm works on each cycle independently. Starting
with the leftmost edge of the cycle, the algorithm traverses the cycle and stores

180 I. Miklós, T.B. Paige, and P. Ligeti

Table 1. The possible configurations of three reality edges in a cycle and the category of
mutations acting on them. Dotted arcs are not necessarily reality edges but alternating
paths of reality end desire edges.

Configuration transposition inv. trans. to the left inv. trans. to the right

+2-c +1-c +1-c

+1-c +2-c “rest”

+1-c “rest” +2-c

+1-c “rest” “rest”

“rest” +1-c +1-c

“rest” +1-c “rest”

“rest” “rest” +1-c

“rest” “rest” “rest”

the visiting order of reality edges, as well as the direction of the reality edges
on the cycle-traversing. π(i) tells the visit order of the reality edge in the ith
position, and pos(i) tells the position of the edge which was the ith in the cycle
tour and sign(i) tells the direction of the edge.(We will denote by plus sign the
left to right direction and by minus sign the right to left direction.) These arrays
can be trivially calculated in O(n) time.

After this, the algorithm traverses the reality edges in reverse position order
(namely, from right to left), and calculates s max(i) = maxj≥i{π(j)|sign(j) = s}
both for positive and negative signs.

Existence of mutations. Each configuration in Table 1 can be traversed in
six possible ways, see for example in Figure 3 how the first configuration in

Fig. 3. The possible visiting order of three reality edges on which a transposition
increases the number of cycles by two. Dotted arcs are not necessarily reality edges but
alternating paths of reality and desire edges.

Efficient Sampling Transpositions and Inverted Transpositions 181

Table 1 can be traversed. Eight configurations times the six possible traversing
gives 48 cases, and this is the 3! possible permutations of the visiting order of
the three edges multiplied by the 23 possible signs of the three edges. Instead
of configurations and traversing, we will talk about visiting permutations and
signs, there is a one-to-one correspondence between them. Therefore the problem
is to tell in constant time for each permutation, sign pattern and reality edge
whether or not there are other two reality edges to the right being in the given
permutation and sign pattern. Any sign pattern can be discussed in a general
way, the three signs will be denoted by s1, s2 and s3 from left to right.

Another observation is that it is enough to give algorithms for the 1, 2, 3, the
2, 1, 3 and 1, 3, 2 permutations since the cycle can be traversed with starting the
tour on the leftmost edge in the other direction. This will cause a change in
the permutation such that 3 and 1 will be swapped, and all signs will change to
the other sign. For example, in Figure 3, the cases on the right column will turn
to the cases on the left column if the cycle is traversed in a reverse order.

The 1, 2, 3 case. The 1, 2, 3 permutation is the easy case for any signs. The
algorithm traverses again the reality edges in a reverse position order, and cal-
culates

s2 max s3 max(i) = max
j≥i

{π(j)|π(j) < s3 max(j) & sign(j) = s2} (2)

There is a 1, 2, 3 permutation with a good sign pattern for a position i if sign(i) =
s1 and π(i) < s2 max s3 max(i).

The 2, 1, 3 case. The algorithm runs an index i from 1 to n and is in the
rightmost position j for which π(j) < i, sign(j) = s2 and s3 max(j) > i. If
pos(i) < j and sign(i) = s1, then there is a 2, 1, 3 case with proper signs starting
in position pos(i), otherwise such configuration does not exist in that position.
Knowing the pos() and s3 max() arrays, it is easy to jump to the proper rightmost
position until i > s3 max(j). Then the algorithm must go back to the rightmost
position j for which π(j) < i < s3 max(j). Directly traversing back the positions
would take O(n) time and such traversing back might be necessary O(n) times,
giving the algorithm an O(n2) running time. Therefore some preprocessing is
necessary.

In the preprocessing, the algorithm marks the anchor points of the s3 max
threshold function (rectangles in Figure 4). Then for each interval between two
consecutive anchor points, it traverses backward the interval, and creates the
chained list of the local s2 min anchor points (black circles in Figure 4, locality
also means that it checks only points which are smaller than the right anchor
s3 max value). For the local minimum, it finds on the previous chained list the
first anchor point which is smaller than the actual local minimum, traversing
the chain from up to down. The actual list is then augmented with the rest of
the list. With up-to-down search, each anchor point is visited only once while
searching, providing the O(n) running time of the preprocessing algorithm.

182 I. Miklós, T.B. Paige, and P. Ligeti

Fig. 4. Explanatory figure for the 2, 1, 3 algorithm. For details, see the text.

Increase of i is indicated with a double line in Figure 4, jumping in positions is
indicated with a dashed line. While there is no j for which π(j) < i < s3 max(j)
and sign(j) = s2, the algorithm remains in position 1 and marks all pos(i) having
no good 2, 1, 3 configuration. The algorithm jumps positions toward the right
end of the permutation whenever a good position j appears, until i > s3 max(j).
Then it jumps to the next s3 max anchor point to the left, and slides down on
the s2 min chained list until for the current position j, π(j) < i. Each edge of
the s2 min anchor chains is used at most once for back-traversing. To see this,
suppose that the algorithm used an edge in a back-traversing, let the value of
the starting s3 max anchor point be x, and let the starting point of the edge in
question be in position j, hence having value π(j). Clearly, π(j) < x, and next
time the traceback starts when i > x. Although the back-traversing might arrive
to position j, it will stop since i > π(j). Since the total size of the chained s2 min
anchor list is O(n), the algorithm spends only O(n) time with back-traversing,
and hence, has only O(n) running time altogether.

The 1, 3, 2 case. For this case, the preprocessing creates a double chained list
of the numbers having sign s3. It traverses the permutation in position order
(namely, from left to right) and pulls out the numbers having sign s3 from the
chained list. The preprocessing remembers the neighbours of each number being
pulled out, hence it will be possible to put back the numbers in reverse order.

After the preprocessing, the algorithm traverses the permutation in reverse
position order (namely, from right to left), and puts back the visited s3-signed
numbers into the chained list. The algorithm remembers the maximal visited
number with sign s3 having to the right a greater number with s2 sign, denoted

Efficient Sampling Transpositions and Inverted Transpositions 183

by M . Whenever the algorithm arrives to an s2-signed number, S, it updates
M . To do this, it walks on the chained list of s3-signed numbers till the last
number in the chain that is smaller than S. For any s1-signed number X , there
is a 1, 3, 2 configuration iff X < M .

Mutations with leftmost reality edge of position 1, and sampling the
middle and rightmost edges. The above mentioned algorithms work for the
reality edge in position 1, with the notation that the given permutation patterns
must be compared with the configurations in Table 1.

Once we choose a rightmost edge in position i and the type of the mutation,
deciding whether or not a reality edge can be in a pattern being good for the
prescribed mutation is very easy, one should only check the s3 min and s3 max
values with the possible restriction they might not be bigger or smaller than π(i),
depending on the searched permutation pattern. Similarly, once the rightmost
and middle edge have been chosen, it is very easy to find the list of possible
leftmost reality edges.

Weighting the reality edges. Sampling from the uniform list of possible
rightmost edges might lead to a very skewed distribution where mutations on
the right ends of cycles are preferred. This is because there might be significantly
more mutations of a category with a leftmost reality edge at the left end of a
cycle than at the right end of a cycle. Therefore some sophisticated weighting
yields better distribution also in terms of acceptance ratios. This statistical issue
will be discussed in another paper.

“Other” mutations. We must mention that mutations acting on more than
one cycle all fall into the “other” category. Knowing whether or not there are
reality edges being in other cycles, it is trivial to decide whether or not mutations
acting on different cycles and having the current reality edges as leftmost edge
exists is a trivial problem.

4 Discussion

We introduced two strategies for efficient sampling of transpositions and inverted
transpositions. Both algorithms run in O(n) time and memory, and can be used
in Bayesian MCMC. With these sampling algorithms, one MCMC step can be
performed in O(n2) time and in linear memory, which is a significant improvement
to the so far available algorithm having O(n4) running time and O(n3) memory.

We hope we could convince the readers that designing Markov chain Monte
Carlo methods in bioinformatics is not only a statistical problem but an at least
as important algorithmic problem, too.

Acknowledgments

I.M. was supported by the National Office for Research and Technology at the
e-Science Regional Knowledge Centre, Eötvös Loránd University. I.M. is also

184 I. Miklós, T.B. Paige, and P. Ligeti

supported by a Bolyai postdoctoral fellowhip. I.M. and T.B.P. thank for the
Rényi Institute for hosting T.B.P. in 2005 summer. P.L. would like to thank for
the Rényi Institute for hosting him as a young researcher. Zsuzsanna Márton is
thanked for some very useful comments.

References

1. Sturtevant, A.H., and Novitski, E.: The homologies of chromosome elements in the
genus Drosophila. Genetics 26 (1941) 517–541

2. Nadau, J.H., and Taylor, B.A.: Lengths of chromosome segments conserved since
divergence of man and mouse. PNAS 81 (1984) 814–818

3. Palmer, J.D., and Herbon, L.A.: Plant mitochondrial DNA evolves rapidly in struc-
ture, but slowly in sequence. J. Mol. Evol. 28 (1988) 87–97

4. Bader, D.A., Moret, B.M.E., and Yan, M.: A linear-time algorithm for computing
inversion distance between signed permutations with an experimental study. J.
Comp. Biol. 8(5) (2001) 483–491

5. Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory.
Proc. 13th CPM’01, LNCS (2001) 106–117

6. Hannenhalli, S., and Pevzner, P.A.: Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals. J. ACM 46(1) (1999) 1–
27

7. Kaplan, H., Shamir, R., and Tarjan, R.: A faster and simpler algorithm for sorting
signed permutations by reversals. SIAM J. Comput. 29(3) (1999) 880–892

8. Siepel, A.: An algorithm to find all sorting reversals. Proc. RECOMB’02 (2002)
281–290

9. Tannier, E., and Sagot, M.-F.: Sorting by reversals in subquadratic time. Proc.
15th CPM’04, LNCS (2004) 1–13.

10. Hannenhalli, S.: Polynomial algorithm for computing translocation distance be-
tween genomes. Proc. 7th CPM’96, LNCS (1996) 168–185

11. Bafna, V., and Pevzner, A.: Sorting by transpositions. SIAM J. Disc. Math. 11(2)
(1998) 224–240

12. Berman, P., Hannenhalli, S., and Karpinski, M.: 1.375-Approximation Algorithm
for Sorting by Reversals. Proc. ESA’02, LNCS (2002) 200–210

13. Eriksen, N.: (1+ε)-approximation of sorting by reversals and transpositions. Proc.
1st WABI’01, LNCS 2149 (2001) 227–237

14. Gu, Q-P., Peng, S., and Sudborough, H.I.: A 2-Approximation Algorithm for
Genome Rearrangements by Reversals and Transpositions. Theor. Comp. Sci.
210(2) (1999) 327–339

15. Kececioglu, J.D., and Sankoff, D.: Exact and Approximation Algorithms for Sorting
by Reversals, with Application to Genome Rearrangement. Algorithmica 13(1/2)
(1995) 180–210

16. Blanchette, M., Kunisawa, T., and Sankoff, D: Parametric genome rearrangement.
Gene 172 (1996) GC11–GC17

17. Bader, M., and Ohlebusch, E.: Sorting by weighted reversals, transpositions and
inverted transpositions. Proc. RECOMB’06, LNBI 3909 (2006) 563–577.

18. Larget, B., Simon, D.L., and Kadane, B.J.: Bayesian phylogenetic inference from
animal mitochondrial genome arrangements. J. Royal Stat. Soc. B 64(4) 681–695

19. York, T.L., Durrett, R., and Nielsen, R.: Bayesian estimation of inversions in the
history of two chromosomes. J. Comp. Biol. 9 (2002) 808–818

Efficient Sampling Transpositions and Inverted Transpositions 185

20. Larget B, Simon DL, Kadane JB, and Sweet D.: A Bayesian analysis of metazoan
mitochondrial genome arrangements Mol. Biol. Evol. 22(3) (2005) 486–495

21. Durrett, R., Nielsen, R., and York, T.L.: Bayesian estimation of genomic distance.
Genetics 166 (2004) 621–629

22. Miklós, I.: MCMC Genome Rearrangement. Bioinformatics 19 (2003) ii130–ii137
23. Miklós, I., Ittzés, P., and Hein, J.: ParIS genome rearrangement server. Bioinfor-

matics 21(6) (2005) 817-820.
24. Miklós, I., and Hein, J.: Genome rearrangement in mitochondria and its com-

putational biology. Proc. 2nd RECOMB Satellite Workshop on Computational
Genomics RECOMBCG’06, LNBI 3388 (2005) 85–96.

25. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E.:
Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6)
(1953) 1087–1091

26. Liu, J.S.: Monte Carlo strategies in scientific computing. Springer Series in Statis-
tics, New-York. (2001)

27. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57(1) (1970) 97–109

28. von Neumann, J.: Various techniques used in connection with random digits. Na-
tional Bureau of Standards Applied Mathematics Series 12 (1951) 36–38.

Alignment with Non-overlapping Inversions in

O(n3)-Time

Augusto F. Vellozo1, Carlos E.R. Alves2, and Alair Pereira do Lago3

1 Instituto de Matemática e Estat́ıstica da Universidade de São Paulo (IME-USP)
Rua do Matão, 1010 - Cidade Universitária CEP:05508-090 São Paulo - SP - Brasil

vellozo@ime.usp.br
2 Universidade São Judas Tadeu (FTCE-USJT), Rua Taquari, 546, Mooca

CEP:03166-000 São Paulo - SP - Brasil
prof.carlos r alves@usjt.br

3 Instituto de Matemática e Estat́ıstica da Universidade de São Paulo (IME-USP)
Rua do Matão, 1010 - Cidade Universitária CEP:05508-090 São Paulo - SP - Brasil

alair@ime.usp.br

Abstract. Alignments of sequences are widely used for biological se-
quence comparisons. Only biological events like mutations, insertions and
deletions are usually modeled and other biological events like inversions
are not automatically detected by the usual alignment algorithms.

Alignment with inversions does not have a known polynomial algo-
rithm and a simplification to the problem that considers only non-over-
lapping inversions were proposed by Schöniger and Waterman [20] in
1992 as well as a corresponding O(n6) solution1. An improvement to
an algorithm with O(n3 log n)-time complexity was announced in an ex-
tended abstract [1] and, in this present paper, we give an algorithm that
solves this simplified problem in O(n3)-time and O(n2)-space in the more
general framework of an edit graph.

Inversions have recently [4,7,13,17] been discovered to be very impor-
tant in Comparative Genomics and Scherer et al. in 2005 [11] experimen-
tally verified inversions that were found to be polymorphic in the human
genome. Moreover, 10% of the 1,576 putative inversions reported over-
lap RefSeq genes in the human genome. We believe our new algorithms
may open the possibility to more detailed studies of inversions on DNA
sequences using exact optimization algorithms and we hope this may be
particularly interesting if applied to regions around known rearrange-
ments boundaries. Scherer report 29 such cases and prioritize them as
candidates for biological and evolutionary studies.

1 Introduction

Alignments of sequences are widely used for biological sequence comparisons and
can be associated with a set of edit operations that transform one sequence to
the other. Usually, the only edit operations that are considered are the substi-
tution (mutation) of one symbol by another one, the insertion of one symbol
1 In this case, n denotes the maximal length of the two aligned sequences.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 186–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Alignment with Non-overlapping Inversions in O(n3)-Time 187

and deletion of one symbol. If costs are associated with each operation, there is
a classic O(n2) dynamic program that computes a set of edit operations with
minimal total cost and exhibit the associated alignment, which has good quality
and high likelihood for realistic costs.

Other important biological events like inversions are not automatically de-
tected by the usual alignment algorithms and we can define a new edit operation,
the inversion operation, which substitutes any segment by its reverse comple-
ment sequence. We can define a new alignment problem: given two sequences
and fixed costs for each kind of edit operation, the alignment with inversions
problem is an optimization problem that queries the minimal total cost2 of an
edit operations series that transforms one sequence to the other. Moreover, one
may also be interested in the exhibition of its corresponding alignment and/or
edit operations. Unfortunatley, the decision problem associated with alignment
with inversions for an unlimited alphabet size is NP-hard as consequence of Jiang
et al. [5].

Some simplifications of this problem have been studied and were proved to be
NP-complete [3,22]. Many approximation algorithms were also proposed [6,16].
Another important simplification is the problem known as sorting signed permu-
tations by reversals and polynomial algorithms were obtained in a sequence of
papers [2,14,15,21]. These approaches are mainly used for the study of inversions
on sequences of genes, but new comparative results given by Sherer et al. [11]
show also the importance of DNA inversion studies where those methods can
not be used. Moreover, Sherer et al. reported 83 inversions that are contained
within a gene.

Another important approach was introduced in 1992, by Schöniger and Wa-
terman [20]. They introduced a simplification hypothesis: all regions involved
in the inversions do not overlap. This simplification is realistic for local DNA
comparisons on relatively close sequences. This led to the alignment with non-
overlapping inversions problem and they presented a simple O(n6) dynamic
programming solution for this problem and also introduced a heuristic for it
that reduced the average running-time to something between O(n2) and O(n4).

Recently, independent works [8,9,10,12] gave exact algorithms for alignments
with non-overlapping inversions with O(n4)-time and O(n2)-space complexity.
An algorithm with O(n3 log n)-time [1] was later announced. In this paper, we
give an algorithm that solves this simplified problem in O(n3)-time and O(n2)-
space.

2 Alignments with Non-overlapping Inversions

The standard alignment of two strings is called standard alignment in this text.
This kind of alignment, when viewed as the process of transforming a string s in
a string t, uses the well known string edit operations of insertion, deletion and
substitution of symbols.

2 In this work, we deal with the dual approach of maximization of similarity score.

188 A.F. Vellozo, C.E.R. Alves, and A.P. do Lago

The alignment of s and t is usually represented by the insertion of some
spaces (−) in certain places of each string and the matching (alignment) of each
symbol or space of s with the symbol or space in the corresponding position in
t. If s[i] and t[j] are symbols from s and t, respectively, then a pair (s[i], t[j]) is
a substitution of s[i] by t[j] (if they are equal we say it’s a match), (−, t[j]) is
the insertion of t[j] and (s[i],−) is the deletion of s[i]. Usually, there are costs
associated with each edit operation and a score is given to the alignment based
on the pairs that were formed.

An extra operation is considered here: the inversion of a substring. A string
that suffers this operation has a substring removed, reverted, complemented
and inserted back in its original place. For example, the inversion of the string
ACCATGC gives GCATGGT.

When evaluating an alignment with inversions, there is a cost associated with
the inversion operation. Besides that, insertions, substitutions and deletions may
be applied in an inverted substring, incurring in additional costs.

In this paper we consider only non-overlapping inversions. This means that
when aligning two strings we may consider multiple inversions in s, but any
symbol of s may be involved in at most one inverted substring. When dealing
with non-overlapping inversions, the order in which the inversions are performed
is unimportant.

In the following sections, s is the inverted string s while s[a..b] is the inverted
substring os s that starts in position a and ends in position b. These positions
are taken from s, not s, as would be the case in s[a..b] (notice the extension of
the bar in each case).

3 Edit Graph

Let s and t be two sequences of lengths n and m respectively.

Definition 3.1 (Edit Graph of s and t). Consider V = {(i, j)|0 ≤ i ≤ n, 0 ≤
j ≤ m} and E = EH ∪ ED ∪ EV , such that,

– EH = {ei,j
H = ((i, j − 1), (i, j))|0 ≤ i ≤ n, 0 < j ≤ m} is the set of horizontal

edges that end on vertex (i, j),
– ED = {ei,j

D = ((i − 1, j − 1), (i, j))|0 < i ≤ n, 0 < j ≤ m} is the set of
diagonal edges that end on vertex (i, j),

– EV = {ei,j
V = ((i − 1, j), (i, j))|0 < i ≤ n, 0 ≤ j ≤ m} is the set of vertical

edges that end on vertex (i, j).

Consider the function ω : E −→ R ∪ {−∞}, that associates each edge e ∈ E
with weight ω(e). The directed graph G = (V, E, ω) is the edit graph of s and t.

In this work, the weight of edge ei,j
V is the score of the deletion of letter s[i]

when s[1..i − 1] is aligned with t[1..j], the weight of edge ei,j
H is the score of

the insertion of letter t[j] when s[1..i] is aligned with t[1..j − 1] and the weight
of edge ei,j

D is the score of the substitution of letter s[i] by letter t[j] when

Alignment with Non-overlapping Inversions in O(n3)-Time 189

(a) Edit graph (b) Extended edit graph

Fig. 1. Examples of edit graph and extended edit graph. Edge weights are not shown,
and the only extended edges shown are those that arrive at (1, 2).

s[1..i−1] is aligned with t[1..j−1]. These weights are usually defined by a function
φ : Σ ∪ {−} × Σ ∪ {−} −→ R ∪ {−∞}, − /∈ Σ, such that ω(ei,j

V) = φ(s[i],−),
ω(ei,j

H) = φ(−, t[i]) and ω(ei,j
D) = φ(s[i], t[i]), where Σ is the set of symbols used

in the sequences.
Therefore, there is a one-to-one relation between paths in G and standard

alignments of s against t. In others words, one path from (0, 0) to (i, j) in G
corresponds to one and only one standard alignment of s[1..i] against t[1..j]. The
score of an alignment without inversions is the total weight of its corresponding
path in G.

We say that a path p from u = (i, j) to v = (i′, j′) is optimal if there is no
other path from u to v with total weight greater than the weight of p. We denote
wv

u = wi′,j′
i,j to be the weight of this optimal path path p. If there is no such a

path from u to v, we denote wv
u = −∞.

Notice that the score of an optimal standard alignment of s against t is the
weight of an optimal path from (0, 0) to (i, j) in G.

Definition 3.2 (Extended edit graph of s and t). Consider EH , ED, EV

and V as described in the definition of edit graph of s and t. Consider E =
EH ∪ED ∪EV ∪EX where EX =

⋃n
i=0

⋃m
j=0 Ei,j

X and Ei,j
X is the set of extended

edges that end on vertex (i, j), that is

Ei,j
X = {ei,j

i′,j′ = ((i′, j′), (i, j)) | 0 ≤ i′ ≤ i ≤ n, 0 ≤ j′ ≤ j ≤ m e (i′, j′) �= (i, j)}.

The directed graph G = (V, E, ω) is the extended edit graph of s and t and the
weight function ω is defined like in the edit graph, but extended to assign weights
to the extended edges.

In this paper, the extended edges represent optimal standard alignments of sub-
strings of t against inverted substrings of s.

Let G be an extended edit graph of s and t. The graph obtained by removing
the extended edges from G is an edit graph of s and t. Like in edit graphs, an
optimal path in an extended edit graph is a path with maximal weight.

190 A.F. Vellozo, C.E.R. Alves, and A.P. do Lago

4 The Algorithm

Let s = s[1..n] and t = t[1..m] be the sequences to be aligned.
Let G = (V, E, ω) be the edit graph of s and t. This graph is used to evaluate

the alignments of substrings of t and inverted substrings of s. In G, the weights
ω(ei,j

H), ω(ei,j
D) and ω(ei,j

V) correspond, respectively, to the scores of insertion of
t[j], substitution of s[i] = s[n + 1− i] by t[j] and deletion of s[i] = s[n + 1− i].

Let G = (V, E, ω) be the extended edit graph of s and t, such that

ω(ei,j
H) = score of insertion of t[j],

ω(ei,j
V) = score of deletion of s[i],

ω(ei,j
D) = score of substitution of s[i] by t[j],

ω(ei,j
i′,j′) = w

(n−i′,j)
(n−i,j′) + ωinv,

where ωinv is a penalty value for inversions and w
(n−i′,j)
(n−i,j′) is the weight of an

optimal path from (n− i, j′) to (n− i′, j) in G. In others words w
(n−i′,j)
(n−i,j′) is the

score of the standard alignment of s[i′ + 1..i] against t[j′ + 1..j].
Since there is a one to one relation between paths in G and alignments with

non-overlapping inversions of s against t, the weight of an optimal path from
(0, 0) to (n, m) in G is the score of an optimal alignment with non-overlapping
inversions of s against t.

The following definitions help us to understand how the weight of an optimal
path from (0, 0) to (n, m) in G is obtained through Algorithm 1.

Definition 4.1 (Matrix B). B[i, j] = wi,j
0,0 is the weight of an optimal path

from (0, 0) to (i, j) on G, 0 ≤ i ≤ n and 0 ≤ j ≤ m.

In others words B[i, j] is the score of an optimal alignment with non-overlapping
inversions of s[1..i] against t[1..j].

Definition 4.2 (Matrix Outii′). Given i′ and i such that 0 ≤ i′ ≤ i ≤ n we
define the matrix Outii′ [1..m, 1..m] of G as

Outii′ [j′, j] =
{

B[i′, j′] + wi,j
i′,j′ , if 0 ≤ j′ ≤ j ≤ m,

−∞ if 0 ≤ j < j′ ≤ m,

The element Outii′ [j′, j] stores the optimal alignment score of s[1..i] against t[1..j]
such that s[i′ + 1..i] is aligned with t[j′ + 1..j].

Definition 4.3 (hDif i,j
i′ vector). Let G be an edit graph. Given i′ and the

vertex (i, j) of G such that 0 ≤ i′ ≤ i, we define hDif i,j
i′ of G by the vector of

size j such that hDif i,j
i′ [j′] = wi,j

i′,j′ − wi,j−1
i′,j′ , 0 ≤ j′ < j.

The vector hDif i,j
i′ has an important property that is used by our algorithm: it

is nondecreasing.

Alignment with Non-overlapping Inversions in O(n3)-Time 191

Lemma 4.4 The vector hDif i,j
i′ of an edit graph G is nondecreasing.

Proof. Let (i′, j1), (i′, j2), (i, j3) and (i, j4) be vertices of G, such that 0 ≤
j1 < j2 ≤ j3 < j4 ≤ m. There is at least one common vertex v that belongs
to the paths from (i′, j2) to (i, j3) and from (i′, j1) to (i, j4), as one can see
at Figure 2. To simplify, we define: a = wi,j3

i′,j1 , b = wi,j4
i′,j2 , c = wv

(i′,j1), d =

w
(i,j4)
v , e = wv

(i′,j2) and f = w
(i,j3)
v . As a and b are the optimal path scores

then a ≥ c + f and b ≥ e + d. Adding the two previous inequalities we have
a+ b ≥ c+ f + e+ d ⇒ b− (e+ f) ≥ (c+ d)− a. Consider j3 = j4− 1. Therefore
wi,j4

i′,j2 − wi,j4−1
i′,j2 ≥ wi,j4

i′,j1 − wi,j4−1
i′,j1 ⇒ hDif i,j4

i′ [j2] ≥ hDif i,j4
i′ [j1].

Fig. 2. Illustration of the proof of Lemma 4.4

The number of times that hDif i,j
i′ [j′] increases when we sweep through

hDif i,j
i′ from j′ = 0 to j − 1 is called ψH i,j

i′ .
Usually, the adopted score system has integer values: r for rewarding a match,

q for a mismatch and E for a gap. Usually 2E ≤ q < r. Using the edit graph
notation, the weights of the edges can be defined as ω(ei,j

D) = r if s[i] = t[j],
ω(ei,j

D) = q if s[i] �= t[j] and ω(ei,j
H) = ω(ei,j

V) = E ∀(i, j). In these cases ψH i,j
i′ ≤

r−2E, so ψH i,j
i′ is limited by a constant. For instance, if the score system is the

LCS (Longest Common Subsequence), r = 1 and q = E = 0, then ψHi,j
i′ ≤ 1.

The Figure 3 shows a case where ψH i,j
i′ ≤ 3.

In this text, we consider ψH i,j
i′ limited by a constant.

We store the values of j′ where occur each increment of hDif i,j
i′ in a matrix

called BLHi
i′ .

Definition 4.5 (BLHi
i′ matrix). Given i′ and i such that 0 ≤ i′ ≤ i ≤ n, we

define the column j, 0 ≤ j ≤ m, of BLHi
i′ as a vector of size ψH i,j

i′ such that
BLHi

i′ [α, j] is the α-th j′ where hDif i,j
i′ [j′] �= hDif i,j

i′ [j′ − 1], for j′ from 1 to
j − 1.

192 A.F. Vellozo, C.E.R. Alves, and A.P. do Lago

-4 -2 -2 -2 -3 -2 0 -1 -2 -3 - 2 0 0 -1 1 2 -1 -1 -1
- -4 -2 -2 -3 -1 1 0 -1 -2 - - 2 0 -1 2 2 -1 -1 -1
- - -4 -4 -2 0 2 1 0 -1 - - - 0 2 2 2 -1 -1 -1
- - - -4 -2 0 2 1 0 0 - - - - 2 2 2 -1 -1 0
- - - - -4 -2 0 -1 -2 -1 - - - - - 2 2 -1 -1 1
- - - - - -4 -2 -2 -2 0 - - - - - - 2 0 0 2
- - - - - - -4 -2 -2 0 - - - - - - - 2 0 2
- - - - - - - -4 -4 -2 - - - - - - - - 0 2
- - - - - - - - -4 -2 - - - - - - - - - 2
- - - - - - - - - -4

BLH

1 - - 1 - 2 1 - 5 5 3
2 - - - - - - - 6 - 4
3 - - - - - - - - - 5

Weights of optimal paths from (0,j') to (n,j) hDif
j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

j'=0 j'=0
j'=1 j'=1
j'=2 j'=2
j'=3 j'=3
j'=4 j'=4
j'=5 j'=5
j'=6 j'=6
j'=7 j'=7
j'=8 j'=8
j'=9

j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

Fig. 3. In this example we used the sequences s = AATG and t = TTCATGACG
to build an edit graph G. All vertical and horizontal edges of G have weight −1, the
weight ω(ei,j

D) = −1 if s[i] �= t[j] and ω(ei,j
D) = 1 if s[i] = t[j].

algorithm 1. Algorithm O(n3) that builds matrix B

BimN3(s, t)

1 for i from 0 to |s| do
2
 Get the optimal path ended with non-extended edges
3 if i = 0 then
4 B[0, 0] ← 0

5 else B[i, 0] ← B[i − 1, 0] + ω(ei,j
V)

6 for j from 1 to |t| do
7 if i = 0 then
8 B[0, j] ← B[0, j − 1] + ω(ei,j

H)

9 else aux ← max(B[i, j − 1] + ω(ei,j
H), B[i − 1, j] + ω(ei,j

V))

10 B[i, j] ← max(aux, B[i − 1, j − 1] + ω(ei,j
D))

11
 Get the optimal path ended with extended edges
12 for i′ from i downto 0 do
13 BLH ← buildBlh(G, BLH, i′)
14 maxOuti

i′ ← getMaxOut(BLH,B, i′)
15 for j from 0 to |t| do
16 B[i, j] ← max(B[i, j], maxOuti

i′ [j] + ωinv)
17 return B

The elements of matrix BLHi
i′ are called borderline points in [18]. Figure 3

shows an example of hDif and BLH .
Algorithm 1 builds matrix B and Figure 4 shows its execution.
The function buildBlh(G, BLH, i′) builds the BLHi

i′ matrix. It was devel-
oped based on the algorithm described in section 6 of [19] and runs in O(m)

Alignment with Non-overlapping Inversions in O(n3)-Time 193

Fig. 4. Execution of Algorithm 1. The dotted line is a path from (0, 0) to (i′, j′) in G.
The dashed line represents an alignment of s[i′ + 1..i] × t[j′ + 1..j].

time. Remembering that each column of a borderline matrix has O(1) elements,
the function buildBlh(G, BLH, i′) builds each column of BLHi

i′ based on the
respective column of matrix BLHi

i′+1 in constant time.
The function getMaxOut(BLH, B, i′) returns a vector with the maximum

value of each column of Outii′ in O(m) time and was developed based on the
algorithm described in subsection 6.2 of [18]. The linear time complexity of this
function is attained through a procedure that sweeps through BLHi

i′ and line i′

of matrix B, both with O(m) data.
Using these functions one can see that Algorithm 1 is correct and runs in

O(n2m) time (O(n3) time, if m = O(n)).

5 Experiments

We implemented Algorithm 1 in Java. We worked with two sequences pair of dif-
ferent lengths, 867 and 95.319 bp (base pairs) of human and chimpanzee. These
sequences are cited in [11]. The human/chimp sequences were downloaded from
theUniversity ofCalifornia at SantaCruzwebsite (http://genome.ucsc.edu/).The
sequences were taken from the November 2003 chimpanzee (panTro1) genome as-
sembly and the May 2004 (hg17) human genome assembly3.

The shortest pair is formed by human genome chr7:95119414-95120280 and
chimpanzee genome chr6:96726524-96727390. The alignment obtained by the al-
gorithm shows 98,6% of total identities and an inversion involving chr7-95119717-
95119979 of human and chr6:96726825-96727087 of chimpanzee.

The longest pair is formed by human genome chr7:80523522-80618840 and
chimpanzee genome chr6:81751455-81846825. To cope with sequences of this
length faster we broke the sequences into fragments of 100 pairs each.

The fragments were submitted to a standard alignment procedure, such that
each fragment from the human genome was aligned against every fragment of
the chimpanzee genome twice: inverted and not inverted. Our algorithm was
used considering the sequences like sequences of fragments instead of sequences

3 http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=59218717&g=netPanTro1

194 A.F. Vellozo, C.E.R. Alves, and A.P. do Lago

of base pairs. A match between two fragments occurs when their alignment has a
score greater than a threshold. The alignment obtained by the algorithm shows
94,8% of total matches and an inversion involving chr7-80553522-80588821 of
human and chr6:81781455-81816854 of chimpanzee. One can see this inversion
at Figure 5 for fragment size 1000 for better resolution.

Fig. 5. Alignment of human genome chr7:80523522-80618840 and chimpanzee genome
chr6:81751455-81846825. Fragment size is 1000 for better visualization.

We also tested the algorithm on simulated data for random DNA sequences
with length in average 700. Each pair of sequences differ from each other by a
number of indels ranging from 5% to 10%, mismatches ranging from 5% to 15%,
and number of non-overlapping inversions ranging from 1 to 15. We obtained
consistent results and detected all the inversions as one would expect.

We also implemented in Java the O(n3 log n) algorithm described in [1], the
O(n4) algorithm described in [9] and the sparse algorithm described in [10] that
has complexity O(r2 log2 r), where r = O(n2) is the number of matches be-
tween symbols in one sequence against symbols in the other sequence. The tests
showed that Algorithm 1 is, as it is expected, always faster than the algorithm
O(n3 log n), which is in turn always faster than the algorithm O(n4). If the se-
quences to be aligned were DNA sequences then Algorithm 1 was faster than
sparse algorithm, but if the sequences to be aligned were sequences of DNA
fragments, where the number of matches is small, then the sparse algorithm was
faster than the Algorithm 1.

Alignment with Non-overlapping Inversions in O(n3)-Time 195

6 Conclusion

In this paper we described a new algorithm that solves the alignment with non-
overlapping inversions problem in O(n3)-time and O(n2)-space. We hope that
this speed up opens the possibility to studies of inversions on DNA sequences
by an exact optimization algorithm. Algorithms that are applied to the study of
inversions of sequences of genes cannot be applied in theses cases, since they do
not allow repetitions of symbols, nor insertions, nor deletions.

Our algorithm may be particularly interesting when applied to regions around
known rearrangement boundaries, since many biologists suppose that inversions
at DNA level are very probable in these cases.

Many studies have been done with inversions in DNA sequences.

Acknoledgements

This work was supported by Proj. Pronex-FAPESP/CNPq proc. 2003/09925-5.

References

1. Carlos E. R. Alves, Alair Pereira do Lago, and Augusto F. Vellozo. Alignment with
non-overlapping inversions in O(n3 log n)-time. In Proceedings of GRACO2005, vol-
ume 19 of Electron. Notes Discrete Math., pages 365–371 (electronic), Amsterdam,
2005. Elsevier.

2. David A. Bader, Bernard M. E. Moret, and Mi Yan. A linear-time algorithm for
computing inversion distance between signed permutations with an experimental
study. Journal of Computational Biology, 8(5):483–491, 2001.

3. Alberto Caprara. Sorting permutations by reversals and Eulerian cycle decompo-
sitions. SIAM J. Discrete Math., 12(1):91–110 (electronic), 1999.

4. Cerdeño-Tárraga, Patrick, Crossman, Blakely, Abratt, Lennard, Poxton, Duerden,
Harris, Quail, Barron, Clark, Corton, Doggett, Holden, Larke, Line, Lord, Nor-
bertczak, Ormond, Price, Rabbinowitsch, Woodward, Barrell, and Parkhill. Ex-
tensive DNA inversions in the B. fragilis genome control variable gene expression.
Science, 307(5714):1463–1465, Mar 2005.

5. Xin Chen, Jie Zheng, Zheng Fu, Peng Nan, Yang Zhong, Stefano Lonardi, and Tao
Jiang. Assignment of orthologous genes via genome rearrangement. IEEE/ACM
Trans. Comput. Biol. Bioinformatics, 2(4):302–315, 2005.

6. David A. Christie. A 3/2-approximation algorithm for sorting by reversals. In
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(San Francisco, CA, 1998), pages 244–252, New York, 1998. ACM.

7. Cáceres, Ranz, Barbadilla, Long, and Ruiz. Generation of a widespread Drosophila
inversion by a transposable element. Science, 285(5426):415–418, Jul 1999.

8. A. P. do Lago, C. A. Kulikowski, E. Linton, J. Messing, and I. Muchnik. Compara-
tive genomics: simultaneous identification of conserved regions and their rearrange-
ments through global optimization. In The Second University of Sao Paulo/Rutgers
University Biotechnology Conference, Rutgers University Inn and Conference Cen-
ter, New Brunswick, NJ, August 2001.

196 A.F. Vellozo, C.E.R. Alves, and A.P. do Lago

9. Alair Pereira do Lago, Ilya Muchnik, and Casimir Kulikowski. An O(n4) algorithm
for alignment with non-overlapping inversions. In Second Brazilian Workshop on
Bioinformatics, WOB 2003, Macaé, RJ, Brazil, 2003. http://www.ime.usp.br/
∼alair/wob03.pdf.

10. Alair Pereira do Lago, Ilya Muchnik, and Casimir Kulikowski. A sparse dynamic
programming algorithm for alignment with non-overlapping inversions. Theor.
Inform. Appl., 39(1):175–189, 2005.

11. Feuk, MacDonald, Tang, Carson, Li, Rao, Khaja, and Scherer. Discovery of human
inversion polymorphisms by comparative analysis of human and chimpanzee DNA
sequence assemblies. PLoS Genet, 1(4):e56, Oct 2005.

12. Yong Gao, Junfeng Wu, Robert Niewiadomski1, Yang Wang, Zhi-Zhong Chen, and
Guohui Lin. A space efficient algorithm for sequence alignment with inversions. In
Computing and Combinatorics, 9th Annual International Conference, COCOON
2003, volume 2697 of Lecture Notes in Computer Science, pages 57–67. Springer-
Verlag, 2003.

13. Graham and Olmstead. Evolutionary significance of an unusual chloroplast DNA
inversion found in two basal angiosperm lineages. Curr Genet, 37(3):183–188, Mar
2000.

14. Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip: poly-
nomial algorithm for sorting signed permutations by reversals. In ACM Symposium
on Theory of Computing, pages 178–189. Association for Computing Machinery,
1995.

15. Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip: poly-
nomial algorithm for sorting signed permutations by reversals. J. ACM, 46(1):1–27,
1999.

16. J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting
by reversals, with application to genome rearrangement. Algorithmica, 13(1-2):
180–210, 1995.

17. Kuwahara, Yamashita, Hirakawa, Nakayama, Toh, Okada, Kuhara, Hattori,
Hayashi, and Ohnishi. Genomic analysis of Bacteroides fragilis reveals extensive
DNA inversions regulating cell surface adaptation. Proceedings of the National
Academy of Sciences U S A, 101(41):14919–14924, Oct 2004.

18. Gad M. Landau and Michal Ziv-Ukelson. On the common substring alignment
problem. J. Algorithms, 41(2):338–359, 2001.

19. Jeanette P. Schmidt. All highest scoring paths in weighted grid graphs and their
application to finding all approximate repeats in strings. SIAM J. Comput.,
27(4):972–992 (electronic), 1998.

20. M. Schöniger and M. S. Waterman. A local algorithm for DNA sequence alignment
with inversions. Bulletin of Mathematical Biology, 54(4):521–536, Jul 1992.

21. Eric Tannier and Marie-France Sagot. Sorting by reversals in subquadratic time.
In Combinatorial pattern matching, volume 3109, pages 1–13, 2004. CPM 2004.

22. R. Wagner. On the complexity of the extended string-to-string correction prob-
lem. In Seventh ACM Symposium on the Theory of Computation. Association for
Computing Machinery, 1975.

Accelerating Motif Discovery: Motif Matching

on Parallel Hardware

Geir Kjetil Sandve1, Magnar Nedland2, Øyvind Bø Syrstad1,
Lars Andreas Eidsheim1, Osman Abul3, and Finn Drabløs3

1 Department of Computer and Information Science,
Norwegian University of Science and Technology, Trondheim, Norway

sandve@idi.ntnu.no, {syrstad, eidsheim}@stud.ntnu.no
2 Interagon A.S.,

Trondheim, Norway
magnar.nedland@interagon.com

3 Department of Cancer Research and Molecular Medicine,
Norwegian University of Science and Technology, Trondheim, Norway

{osman.abul, finn.drablos}@ntnu.no

Abstract. Discovery of motifs in biological sequences is an important
problem, and several computational methods have been developed to
date. One of the main limitations of the established motif discovery meth-
ods is that the running time is prohibitive for very large data sets, such
as upstream regions of large sets of cell-cycle regulated genes. Parallel
versions have been developed for some of these methods, but this re-
quires supercomputers or large computer clusters. Here, we propose and
define an abstract module PAMM (Parallel Acceleration of Motif Match-
ing) with motif matching on parallel hardware in mind. As a proof-of-
concept, we provide a concrete implementation of our approach called
MAMA. The implementation is based on the MEME algorithm, and uses
an implementation of PAMM based on specialized hardware to acceler-
ate motif matching. Running MAMA on a standard PC with specialized
hardware on a single PCI-card compares favorably to running parallel
MEME on a cluster of 12 computers.

1 Introduction

Computational discovery of motifs in biological sequences has many important
applications, the best known being discovery of transcription factor binding sites
(TFBS) in DNA and active sites in proteins. More than a hundred methods have
been developed for this problem, all with different strengths and characteristics.
Methods that use probabilistic motifs (typically PWMs) are often favored be-
cause of their high expressibility. One of the best known and most widely used
methods is MEME [1]. MEME is a flexible tool that uses Expectation Maxi-
mization (EM) to discover motifs as position weight matrices (PWMs) in both
proteins and DNA.

One of the main limitations of current PWM-based motif discovery methods
is that the running time is prohibitive for large datasets such as upstream regions

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 197–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

198 G.K. Sandve et al.

of large sets of cell-cycle regulated genes. Parallel versions have been developed
for some methods, for instance the paraMEME [2] version of MEME, but this
typically requires supercomputers or computer clusters. Specialized hardware,
such as Field Programmable Gate Arrays (FPGAs), may be a very viable alter-
native to this. FPGAs have previously been used in bioinformatics for instance
to accelerate homology search [3], multiple sequence alignment [4] and phylogeny
inference [5].

In this paper, we propose and define an abstract module PAMM (Parallel
Acceleration of Motif Matching). Proposing the PAMM module serves two pur-
poses. Firstly, it introduces acceleration of motif matching by parallel hardware
to the motif discovery field. Secondly, PAMM serves as an interface between the
development of modules for parallel matching of motifs and the development of
algorithms that can make use of parallel motif matching.

As a first implementation of our methodology, we propose a method MAMA
(Massively parallel Acceleration of the Meme Algorithm) that accelerates MEME
by the use of an existing pattern matching hardware called the Pattern Match-
ing Chip (PMC) [6]. The PMC can match a subset of regular expressions with
massive parallelization1. Since this chip was not intended for weighted pattern
matching, some transformations are needed when representing and matching
motifs. Nonetheless, with these transformations in place we achieve very effi-
cient matching of PWMs against sequences. Running MAMA on a standard PC
with specialized hardware on a single PCI-card compares favorably to running
paraMEME on a cluster of 12 computers.

2 Parallel Acceleration of Motif Matching

An ever increasing number of computing platforms offer capabilities for parallel
execution of programs. Specialized hardware exists to relieve the main CPU of
specific tasks, and FPGAs allow the creation of modules for application specific
hardware acceleration. To allow the field of motif discovery to realize the full
potential of modern computing hardware, the algorithms need to take advantage
of this.

Here we propose and define an abstract module PAMM that can be used
for accelerating motif discovery by matching motifs against sequences in paral-
lel. The purpose of PAMM is to serve as an interface between development of
modules for parallel matching of motifs and the development of algorithms that
can make use of parallel motif matching. An overview of the PAMM module is
presented in Figure 1. The input to PAMM is a set of motifs M and a set of
sequences S, while the output depends on the requirements of the algorithm in
question. Each motif is represented as a matrix. As the figure shows, there are
two main parts in the PAMM module; a motif matcher and a post processing
unit. The motif matcher calculates the match scores for each motif, while the
post processing unit refines the results.

1 More information at http://www.interagon.com

Accelerating Motif Discovery: Motif Matching on Parallel Hardware 199

PAMM
Motifs, m

Sequences, s

Subset of
match scores

Organizer

Aggregator

Motif
matcher

Filter

Organized
match scores

Match
summaries

Post-processing

Cm
s,p

Cm
s,p

Cm
s,p

Fig. 1. The structure of the PAMM module

2.1 Motif Matching

The core of a PAMM implementation is a motif matcher that determines match
scores cm

s,p for each motif m when aligned at each position p in each sequence
s. As the number of motifs and sequences that can be processed in parallel will
be limited in any practical implementation of the module, the algorithm must
partition the inputs accordingly.

As a standard set-up we propose that a limited number of motifs are first
loaded into the PAMM, and that sequence data are then streamed through. The
motif matcher will continually calculate match scores for each motif against the
sequences. When all motifs have been matched against the complete sequence
data, a new set of motifs can be loaded into the module and matched against
the sequences. As this means that the same sequences will typically be streamed
through the PAMM many times, practical implementations could have an option
to store a limited amount of sequence data in local memory to further accelerate
matching and reduce bandwidth usage. This set-up is illustrated in Figure 2(a).

An alternative set-up could be to first load a limited amount of sequence data
into the PAMM, and then stream motifs through the module. This could be an
effective solution for cases with relatively short sequence data and large number
of motifs. This setup is illustrated in Figure 2(b).

2.2 Post-processing of Match Scores

The number of results from the motif matcher is |M | ∗ |S|, where M is the set
of motifs and S is the set of all sequence data. This potentially large amount
of results must somehow be processed by the system. By incorporating post
processing, the number of results returned from a PAMM implementation can
be reduced substantially. This reduces result processing in the algorithm module,
as well as bandwidth requirements in the case where the PAMM and algorithm
modules reside on different (sub)systems.

We envision three main branches of post processing for PAMM implementa-
tions; organizing, filtering, or aggregating (or a combination of these).

200 G.K. Sandve et al.

Motif matcher

Loaded motifs
1..m

Sequence stream
of total length n

1 sequence window at a time

m match scores at a time

Stream of n*m match scores

(a) Motif matcher with loaded motifs
and sequences streamed through

Motif matcher

Loaded sequences
of total length n

Motif stream
of m motifs

1 motif at a time

n match scores at a time

Stream of n*m match scores

(b) Motif matcher with loaded se-
quences and motifs streamed through

Fig. 2. Two possible set-ups of the motif matcher

An organizing post processor organizes the results in a way that facilitates
efficient further processing of results outside the PAMM module. It could for
instance return the match scores sorted by value. Although this does not decrease
bandwidth usage, it may allow the CPU to process the results more efficiently.

A filtering post processor filters out uninteresting match scores to save process-
ing time outside the PAMM module. It could for instance make the PAMM re-
turn only match scores above a threshold given for each motif. Although this
discards some information, our own experiments (not presented here) show that
the normalized match scores typically follow a distribution where most sequence
offsets have a negligible likelihood of being motif locations. In combination with
an organizing post processor, the k highest match scores could be returned, or
all scores at most l lower than the highest match score.

An aggregating post processor is tailored to a specific motif discovery algo-
rithm and may be particularly (computationally) effective. If the PAMM is to be
used in connection with stochastic optimization methods like Gibbs sampling,
it can be set to return one sequence offset per sequence, with offsets chosen
randomly based on the normalized probabilities of motif occurrences. Alterna-
tively, if the PAMM is used in connection with EM methods, a new motif may
be constructed from the match scores directly in hardware (maximization step
of EM). This new motif would represent a weighted average of every window in
the sequences, with windows weighted by the match score of a previous motif.

2.3 Motif Representations

The representation of a motif in PAMM is as a motif matrix m ∈ M with element
values mi,x, where i is motif position and x is a symbol from the alphabet, i.e.,
x ∈ {A, C, G, T}. The element values represent individual scores for each symbol
x from the alphabet at each position i in the motif. The motif is aligned against
sequences as a sliding window. For a given alignment at position p in sequence

Accelerating Motif Discovery: Motif Matching on Parallel Hardware 201

s, the score of motif position i is mi,x, where x is the symbol at position p + i in
sequence s. The match score cm

s,p of the motif is the sum of scores at each motif
position. This motif representation maps directly to PWMs (log-likelihood or
log-odds) that are often used for motif discovery.

In addition to PWMs, strings allowing mismatches [7,8] (a consensus string
allowing a certain Hamming distance to an occurrence) and IUPAC strings [9,10]
(strings of characters and character classes) are commonly used models in motif
discovery. Both of these can be represented by a motif matrix. For a motif matrix
representing a mismatch string, elements mi,x corresponding to the consensus
symbol at a position have value 1, and all other matrix elements are 0. Matrix
scores c >= n − h corresponds to a hit for the mismatch expression, where
n is motif length and h is allowed number of mismatches. This is shown in
Figure 3(a). For a motif matrix representing an IUPAC string, elements mi,x

corresponding to symbols in the character class at a position are valued 1, and
all other matrix elements are 0. Matrix scores c = n corresponds to a hit for the
IUPAC expression. This is shown in Figure 3(b)

1

1 1

1

1

A G G C T

Filter with threshold=n-h

A

C

G

T

Mismatch string

B
a
s
e

0000 0000

0000 0000

0000 00

000000 00

(a) mismatch strings

1

1 1

1

1

A [CG] G [ACT] T

1

1

1

Filter with threshold=n

A

C

G

T

IUPAC string

B
a
s
e

0 00

00 0

00 0

00 0

(b) IUPAC strings

Fig. 3. Matrix representation of discrete motif models

Other and more complex motif models could also be represented with such a
matrix (variants of Markov models and bayesian trees have for instance been used
in motif discovery). This will typically require a larger motif matrix and some pre-
processing of the sequence data. Such preprocessing could be done by additional
hardware modules within the PAMM. The generality of the matrix representation
makes it suitable as a standard motif representation for the PAMM module.

3 Practical Implementation

This section describes a motif discovery algorithm that uses a PAMM imple-
mentation to accelerate motif matching. To explore the potential of PAMM in
motif discovery, we have used available hardware (PMC) to implement a PAMM
module.

We have analyzed the running time of the MEME algorithm and developed
a motif discovery algorithm MAMA based on MEME that uses the PAMM

202 G.K. Sandve et al.

implementation for motif matching in the performance-critial parts. As this is
a first implementation and a proof-of-concept, we have only made adjustments
to the MEME algorithm that make it run faster while not altering which motifs
are discovered.

3.1 Motif Discovery Using the PAMM Module

MEME is a a motif discovery algorithm based on Expectation Maximization
(EM) that match motifs against sequences in the expectation step. Profiling
of the MEME implementation showed that matching initial motifs (starting
points) against sequences consumed most of the total running time. We have
therefore made the necessary adjustments to allow parallel acceleration of this
first iteration of MEME.

MEME Running Time. EM was first used for motif discovery by Lawrence
et al. [11]. As EM is easily trapped in local minima, they used several random
starting points (initial PWMs) for EM. This was improved in the MEME algo-
rithm of Bailey and Elkan [1], which use every substring of a given length in
the data set as starting point. More specifically, for every substring a PWM is
constructed with a fixed weight to the elements in the matrix corresponding to
symbols in the substring, and another, lower fixed weight to the other elements.
As this typically amounts to very many starting points, they run EM for one
iteration from each starting point, and then only continue with those PWMs
that seem most promising.

Inspection of the MEME implementation2 shows that specialized code is used
for this first iteration, using dynamic programming to exploit overlap between
starting points. PWMs generated from each substring in the data set are first
matched against the sequences (expectation step). For each PWM, the sequence
offsets are then sorted by match score and the k highest scoring offsets used to
generate a PWM candidate for the next iteration (maximization step). Finally,
the significance values for all candidate PWMs are computed, and the most
significant ones kept and refined (iterated until convergence).

MEME tries a very large number of starting points in the first iteration,
and only continues with a few most promising motifs. Our profiling showed
that the first iteration amounted to around 97% of total running time in our
tests, using data sets supplied with MEME, the TCM model, and otherwise
default parameters. Although this number might vary for different test cases
and parameter settings, it shows that the first iteration is the bottleneck when it
comes to running time of the algorithm. Furthermore, matching motifs against
sequences and sorting offset scores dominate the running time.

Exploration of Starting Points. As the first iteration dominates the running
time of MEME, we have focused on accelerating this part. More specifically, we
have used the PAMM module to match PWMs and sort offset scores in the first
iteration, and left the remaining parts of MEME unaltered.

2 Version 3.5.0, downloaded from http://meme.nbcr.net/downloads/

Accelerating Motif Discovery: Motif Matching on Parallel Hardware 203

Exploration of starting points differs a bit from all other iterations in MEME.
First, all matrix elements of starting point PWMs has one of two values: a fixed
high value for elements corresponding to the symbol of the substring it is based
on, and a fixed low value for every other element. Thus, all sequence windows
at a given Hamming distance from the substring a PWM is based on will get
the same PWM score. Ranking of sequence offsets based on PWM score will
therefore in the first iteration be equal to ranking of sequences windows based
on Hamming distance. Secondly, in a general EM iteration each sequence window
is used in the maximization step (weighted by the expectation values). When
maximizing the PWMs in the first iteration, however, only the sequence windows
corresponding to the top k expectation values are used.

These properties are exploited in MAMA by using a PAMM implementation
that represents motifs efficiently and returns sequence offsets sorted by match
score. The motif discovery algorithm thus only needs to consider the first k
sequence offsets returned by the PAMM implementation.

3.2 Implementation of the PAMM Module

We have implemented PAMM using available hardware for parallel pattern
matching. This hardware, The Pattern Matching Chip (PMC) [6], is a multiple
instruction single data (MISD) parallel hardware on a PCI card. One PCI-card
can match up to one thousand simple patterns against 100 MB of sequences per
second, and it is quite straightforward to set up searches. Because of its effi-
ciency and ease of use, we have used the PMC for this first implementation of
the PAMM module. The PMC implementation covers both motif matching and
organization of match scores.

Motif Matching. As the PMC only supports binary matching of patterns,
and integer summation, the PWM match scores need to be discretized. The
discretization is based on the fact that the log-likelihood for any base pair in any
location is in the interval

[
log(β

n+4β), log(n+β
n+4β)

]
, where β is the pseudo-count

and n is the number of motif sites, given as parameters to MEME. Instead of
using a fixed granulation of the interval, we define a granulation parameterized
with ε. Then, each value mi,x in the PWM m is represented by a number ci,x =

� log(mi,x)−log(β
n+4β)

ε � of processing elements (PEs) in the specialized hardware.
The number of PEs matching a symbol of the alphabet at a given position is thus
proportional to the log-likelihood value of that symbol at that position. When
the PWM is aligned with a sequence window, the sum of PE match scores at
a motif position then corresponds to the score at that position. Note that since
only one of the four nucleotides can match at a position, the other three do not
contribute to the score. Furthermore, as PWM log-likelihood is the the sum of
log-likelihoods for each position, the total PWM score is given by the sum of
scores of all positions.

Two optimizations are worth mentioning. First, if the minimum score ci =
minx(ci,x) at a given position i is higher than zero, we may subtract ci from

204 G.K. Sandve et al.

each score value at that position, and then add ci to the score after the search.
Secondly, if c = maxi,x(ci,x) is the maximum score value of the motif, and more
score values are close to c than are close to zero, we then use transformed score
values c′i,x = c− ci,x and compute total PWM score as: c · I −

∑
i

∑
x c′i,x, where

i runs over all I positions of m. Both optimizations give equivalent results to the
basic method while using less PEs on the PMC, thus allowing more matrices to
be matched simultaneously.

The discretization method considered above can be used generally for match-
ing arbitrary PWMs against sequences. The approximation accuracy clearly de-
pends on the granulation parameter ε. As discussed in section 3.1, the PWMs
are regular in the first iteration of MEME. Motif matching can then be done
with degenerate use of discretization, thereby avoiding approximation problems.
To ensure that MAMA gives the same results as MEME, we have therefore only
used hardware-acceleration in the first iteration, and used a standard software
solution for motif matching in the remaining iterations. Since the running time
of MEME is strongly dominated by the first iteration, we still achieve significant
speed-ups.

Organizing Match Scores. As the PMC provides massive parallelity, we are
able to calculate expectation values for many PWMs in parallel. We also use this
parallelity to scan each PWM against the sequences several times with different
hit thresholds. By searching with several thresholds in parallel, we can make the
PMC return sequence offsets sorted by decreasing match score. This corresponds
to a PAMM organizing module for post-processing of match scores, and avoids
CPU-intensive sorting of offsets after the expectation step.

4 Results

We have compared the performance of our hardware accelerated version MAMA
with the CPU based version of MEME on data sets of different sizes. On all
test referred to here we have used the TCM model of MEME, which is the most
general model and presented as the main model in the original MEME article
[1]. We ran our tests with the following hardware configuration:

– MAMA: 2.8 Ghz Pentium4 PC with 1 GB memory and the specialized hard-
ware on a single PCI card.

– MEME: 2.8 Ghz Pentium4 PC with 1 GB memory.

– ParaMEME: a cluster of 12 computers, each 3.4 Ghz Pentium4 PC with 1
GB memory.

We evaluated the performance of MAMA on the largest data set (mini-drosoph)
supplied with MEME and on 5 data sets of human promoter regions, consisting
of from 100 to 1600 sequences of 5000 base pair length from cell cycle regulated
genes (J.P.Diaz, in preparation). Data sets, sizes and running times are given in
Table 1 for both MEME, paraMEME and MAMA. We see that MAMA gives a

Accelerating Motif Discovery: Motif Matching on Parallel Hardware 205

Table 1. Results for MEME, paraMEME and MAMA on 6 data sets

Running time (hours)
Data set Size (Mbp) MEME paraMEME MAMA

mini-drosoph 0.5 2.6 0.19 0.27
hs 100 0.5 2.7 0.20 0.23
hs 200 1 11 0.87 0.50
hs 400 2 104 3.6 1.7
hs 800 4 X3 15 6.4
hs 1600 8 X3 64 13

significant speed-up compared to MEME on all datasets, and that the speed-up
increases with data set size. On the 1 Mbp (Million base pairs) data set, MAMA
is more than twenty times as fast as MEME, and on the 8 Mbp data set it is
even four times as fast as paraMEME on the 12-computer cluster. For all data
sets, standard MEME and the hardware-accelerated version MAMA discovers
the same motifs.

5 Discussion and Conclusion

We have proposed an abstract module PAMM for parallel hardware-acceleration
of motif discovery. This module could be used for acceleration of many differ-
ent motif discovery methods. The acceleration could be especially large if post-
processing of match scores is tailored to a specific algorithm.

As an exemplification and proof-of-concept we have developed a version of
the MEME algorithm called MAMA that uses available hardware to implement
a PAMM module. As shown in section 4, MAMA achieves a speed-up of more
than a factor of 10 as compared to MEME on a single CPU. Our working im-
plementation thus shows that the PAMM module indeed has a potential.

Furthermore, our work shows examples of both problematic issues and po-
tential rewards in connection with hardware acceleration of algorithms within
bioinformatics. Since we have implemented weighted motif matching on hardware
that was not specifically built for that purpose, we had to do some transforma-
tions of the problem. The issues and solutions with regards to discretization and
parallelization are relevant for many algorithmic solutions involving specialized
hardware.

A natural continuation of the work presented in this paper is to develop a
FPGA-based implementation of PAMM. Such a solution would be more readily
available for practical use and further refinement by the scientific community.
It could potentially also give even higher speed-ups. On the other hand, such a
solution presumes a solution of representing PWMs on FPGA that is both effi-
cient and flexible. We have ongoing work in this direction that shows promising
results.

3 Not tested due to excessive running times.

206 G.K. Sandve et al.

References

1. Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to
discover motifs in biopolymers. Proc. Conf. Intell. Syst. Mol. Biol. ISMB’94 (1994)
28–36

2. Grundy, W.N., Bailey, T.L., Elkan, C.P.: ParaMEME: a parallel implementation
and a web interface for a DNA and protein motif discovery tool. Comput. Appl.
Biosci. 12 (1996) 303–310

3. Yamaguchi, Y., Miyajima, Y., Maruyama, T., Konagaya, A.: High speed homology
search using run-time reconfiguration. LNCS. Volume 2438. (2002) 281–291

4. Oliver, T., Schmidt, B., Nathan, D., Clemens, R., Maskell, D.: Using reconfigurable
hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics
21(16) (2005) 3431–3432

5. Mak, T.S.T., Lam, K.P.: Embedded computation of maximum-likelihood phy-
logeny inference using platform FPGA. In Proc. Comput. Systems Bioinformatics
Conf. CSB’04, IEEE. (2004) 512–514

6. Halaas, A., Svingen, B., Nedland, M., Sætrom, P., Snøve Jr., O., Birkeland, O.R.:
A recursive MISD architecture for pattern matching. IEEE Trans. Very Large
Scale Integr. Syst. 12(7) (2004) 727–734

7. Marsan, L., Sagot, M.F.: Extracting structured motifs using a suffix tree-algorithms
and application to promoter consensus identification. In: Proc. 4th Int’l Conf.
Comput. Mol. Bio. RECOMB’00, ACM Press (2000) 210–219

8. Blanchette, M., Tompa, M.: Discovery of regulatory elements by a computational
method for phylogenetic footprinting. Genome Res. 12(5) (2002) 739–748

9. Sinha, S., Tompa, M.: YMF: A program for discovery of novel transcription factor
binding sites by statistical overrepresentation. Nucleic Acids Res. 31(13) (2003)
3586–3588

10. Bortoluzzi, S., Coppe, A., Bisognin, A., Pizzi, C., Danieli, G.: A multistep bioin-
formatic approach detects putative regulatory elements in gene promoters. BMC
Bioinformatics 6(1) (2005) 121

11. Lawrence, C.E., Reilly, A.A.: An expectation maximization (EM) algorithm for
the identification and characterization of common sites in unaligned biopolymer
sequences. Proteins 7(1) (1990) 41–51

Segmenting Motifs in Protein-Protein Interface

Surfaces�

Jeff M. Phillips1, Johannes Rudolph2, and Pankaj K. Agarwal1

1 Department of Computer Science, Duke University
2 Department of Biochemistry, Duke University

Abstract. Protein-protein interactions form the basis for many inter-
cellular events. In this paper we develop a tool for understanding the
structure of these interactions. Specifically, we define a method for iden-
tifying a set of structural motifs on protein-protein interface surfaces.
These motifs are secondary structures, akin to α-helices and β-sheets in
protein structure; they describe how multiple residues form knob-into-
hole features across the interface. These motifs are generated entirely
from geometric properties and are easily annotated with additional bi-
ological data. We point to the use of these motifs in analyzing hotspot
residues.

1 Introduction

Interactions between proteins govern many intercellular events, yet are poorly
understood. These interactions lie at the heart of cell division and cell growth,
which in turn dictate the pattern of health versus disease. A better understand-
ing of protein-protein interactions will enhance our understanding of biological
processes and how we can manipulate them for the benefit of human health.

Protein-protein interfaces. The protein-protein interface defines the essential
region of a protein-protein interaction. Most attempts [10,12,20] at defining this
interface include all atoms from one protein within some distance cutoff (4−5Å)
from atoms of the other protein. This approach does not provide independent
structural information and makes it difficult to identify features or subregions
of the interface. To follow standard notation, we refer to the interface between
two protein chains (say A and D) in a protein complex (say 1brs) as 1brsAD.

A more recent approach to defining the protein-protein interface [3] constructs
a surface equidistant to both chains of a complex using the Voronoi diagram.
This otherwise infinite structure is bounded using topological techniques. Each
atom that contributes to the interface is associated with at least one polygon on
the interface surface, and each polygon is associated with two atoms, one from

� Research supported by NSF grant CCR-00-86013 and NIH GM061822. J.M.P. is also
supported by an NSF GRF and a JB Duke Fellowship; and P.K.A. is also supported
by NSF under grants EIA-98-70724, EIA-01-31905, and CCR-02-04118, and by a
grant from the U.S.–Israel Binational Science Foundation.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 207–218, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

208 J.M. Phillips, J. Rudolph, and P.K. Agarwal

each side. The freely available MAPS: Protein Docking Interfaces software [2]
has been developed to visualize protein interfaces and their relevant properties.
The MAPS software displays the interface surface embedded between the protein
structures as well as a simplified flattened view. The flattened interface surface
can be colored to show physico-chemical properties such as residue type, atom
type, distance to closest atom, or electrostatics, as associated with each polygon.
A merged view allows both sides of the interface to be viewed simultaneously.

Features of surfaces. Proteins have evolved extensive shape complementarity
to their interacting proteins. Because protein surfaces are not flat, this leads
to knob-into-hole structures at the protein-protein interface, as noted by Con-
nolly [6]. These knobs consist of a set of atoms, often from a single residue, that
protrude from one protein into the other protein of the complex. This interaction
may be difficult to capture by examination of the structure of the protein com-
plex. However, these knob-into-hole features can be readily identified visually
in nearly all protein-protein complexes as bumps on the interface surface. Yet,
their biological significance is not well understood, in part because there exists
no standard definition or automated method of indentification. Our goal is to
automatically segment these regions on the interface surface in a consistent way.
We call these knob-in-hole features motifs.

Feature extraction is a common problem in computer vision [5,13,19], where
features points are used to provide a correspondence between two surfaces. How-
ever, these techniques only identify specific points as opposed to interesting re-
gions. For closed curves and surfaces, such as protein surfaces, interesting regions
corresponding to knobs and holes can be defined using a variety techniques like
elevation [1,18]. However, these approaches do not generalize to surfaces with
boundary, such as the interface surface, and thus the bumps at the interaction
site corresponding knobs and holes could not be identified. On a surface with
boundary, the problem of defining regions of significance is quite challenging.
There is no clear measure of depth, the overall geometry can obscure local fea-
tures of interest, and local features can be excessively fragmented. As such, it is
hard to quantify bumps or pockets, much less segment them.

Our contribution. We adapt standard notions of discrete curvature on a polygo-
nal surface to be less local. Using this globally-aware definition we grow regions
with large curvature to segment regions of interest on the interface surface. We
then integrate these motifs with the MAPS software to incorporate structural
information into this convenient visualization tool. Finally we demonstrate some
interesting properties of these motifs.

2 Discrete Curvature and Watershed Procedures on
Polygonal Surfaces

The protein-protein interface surface as defined in [3] is the piecewise-linear
surface, that is everywhere equidistance from the closest atom in each of the
two proteins. We represent this structure as a set of triangles that are glued

Segmenting Motifs in Protein-Protein Interface Surfaces 209

together with edges and vertices denoted Σ = {T, E, V }, respectively. All inter-
face surfaces we deal with separate two proteins1, and thus Σ is an orientable
piecewise-linear 2-manifold with boundary in R

3. We can thus arbitrarily choose
one of these proteins and let the normal direction of every triangle t ∈ T point
towards this protein.

Vertices, edges, and triangles are simplices. A vertex is a 0-simplex, an edge is
a 1-simplex, and a triangle is a 2-simplex. The star of a simplex σ, denoted St(σ),
is the set of simplices incident to σ. More generally, if Υ is a set of simplices,
then St(Υ) is the set of simplices incident to any simplex in Υ . The link of a
set of simplices Υ , denoted Lk(Υ), is the boundary of the closure of St(Υ). All
interior vertices have the same number of incident edges and incident triangles
while boundary vertices have one fewer incident triangles than they do incident
edges. All vertices have at least 3 incident edges. For each triangle t ∈ St(v)∩T ,
let αv,t be the angle between the two edges of t incident to v, as shown in
Figure 1.

2.1 Discrete Curvature

To formalize the notion of how much the interface surface is locally bending, we
appeal to the idea of curvature. Any point p on a smooth surface can be assigned
a value of Guassian curvature and mean curvature [7]. We extend these notions to
vertices on a polygonal surface. The standard [15] definition for discrete Gaussian
curvature of a vertex v is

K(v) = 2π −
∑

t∈St(v)∩T

αv,t.

Intuitively, K(v) describes the angle defect, or how far the angles of the surface
surrounding v are from those of a flat surface.

There is no standard definition for the discrete mean curvature of a vertex; it
is only defined on edges. We present a new definition for discrete mean curvature,
H , on vertices. For a triangle t ∈ T , let nt denote the unit vector in the direction
normal to triangle t. We define the normal direction of a vertex v to be the
weighted mean of the normal directions of all of its incident triangles, as follows

nv =

⎛⎝ ∑
t∈St(v)∩T

αv,tnt

⎞⎠/⎛⎝ ∑
t∈St(v)∩T

αv,t

⎞⎠ . (1)

For a triangle t and a vertex v incident to t, we define the face vector fv,t to be
the unit vector from v to the mid point of the edge opposite v on t. Now we
define discrete mean curvature of v as
1 An interface surface can be defined to separate more than two proteins in a larger

complex. In this case the surface is not an orientable 2-manifold because an edge
can have three adjacent triangles. However, we can always divide this larger surface
into orientable 2-manifold components.

210 J.M. Phillips, J. Rudolph, and P.K. Agarwal

H(v) =

⎛⎝ ∑
t∈St(v)∩T

αv,t(nv · fv,t)

⎞⎠/⎛⎝ ∑
t∈St(v)∩T

αv,t

⎞⎠ , (2)

where · indicates a dot product (see Figure 1). Intuitively, H(v) denotes the

t

αv,t

v

p

q

p + q

2

fv,t

nv

t

v

Fig. 1. Star of vertex v to illustrate the calculation of K (left) and H (right)

average deviation from nv of the normals of all triangles incident to v, weighted
by their incident angles. For a vertex v, if K(v) is positive, then the sign of
H(v) determines if the surface surrounding v is curving towards the normal
direction, or away from the normal direction. If a polygonal surface is a piecewise-
linear approximation of a smooth surface, then the area of triangles, instead of
angles can be used as weights in (1) and (2). Since, an interface surface does
not approximate a smooth surface, we use the angles of the incident triangles
as weights. As the surface is subdivided, the curvature of the surface does not
change, and neither do the incident angles.

2.2 Watershed Procedures

Let h : Σ → R be a function defined on a surface Σ. If Σ is R
2, we can imagine

h representing the height of a terrain. Suppose we start pouring water on the
terrain and monitor the structure of the flooded regions. The connectivity of the
flooded regions changes at the critical points of the terrain: minima, maxima,
and saddle points. Lakes are created at minima, islands disappear at maxima,
and lakes merge or islands form at saddle points. At saddle points, instead of
always merging lakes or creating islands, a dam can be built to define a boundary
between two regions. This approach, known as the watershed algorithm [17], can
be extended to height functions on 2-manifolds and the dam locations can be
used to segment Σ.

However, there is no clear notion of a height function on an arbitrary 2-
manifold. Using K or H as the height does not segment Σ well because curva-
ture is a local property. Hence, we modify the above watershed algorithm in two
ways. First we run the watershed algorithm from two sides of Σ simultaneously
using K, but use the sign of H to determine on which of the two sides a flooded
component lies. We create dams when two components from opposite sides meet,

Segmenting Motifs in Protein-Protein Interface Surfaces 211

and we merge components from the same side. We face another technical problem
if we use K as the height function. Consider the motif (in purple) on the interface
surface 1atnAD shown in Figure 2. The value of K(v1) is large, but K(v2) is
small. A watershed algorithm directly using the function K would not identify
the motif shown; rather it would just segment the tip of the motif. By altering
the value of K(v) in a careful manner, the algorithm lets components grow in
large steps. How we redefine the values of K(v) will be explained in more detail
in Section 3.1.

v1

v2

Fig. 2. One motif on interface surface 1atnAD. K(v1) is large, but K(v2) is not.

3 Algorithm for Finding Motifs

Each motif we construct is a component of the subset of the interface surface
visited by the modified watershed algorithm. A motif is represented by the set
of vertices in its interior. We let M denote both a motif and its set of vertices. A
sign ς(M) ∈ {−, +} is assigned to each motif M when it is created. The rim of
M , denoted by rim(M), is the set of vertices in Lk(M). If there are two motifs
M and M ′, with ς(M) �= ς(M ′), and there is a vertex r ∈ rim(M) ∩ rim(M ′),
then r is called a dam vertex. A dam vertex never becomes an interior vertex of
a motif.

Algorithm 3.1 outlines our algorithm. We set a threshold τ . At each step the
algorithm chooses a vertex v with K(v) ≥ τ . It makes v a dam vertex, adds v to
a motif, creates a new motif with v as its interior vertex, or merges two motifs
that share v on their rims. It then recomputes the value of K(·) on the “affected”
rim vertices. The worst-case running time of the algorithm is O(|V |2). However
the algorithm took 1 to 75 seconds on the 143 interface surfaces we tested; these
surfaces consisted of between 943 and 9096 simplices.

Figure 3 displays the interface 1brsAD from two angles. The motifs are colored
in two shades, representing either a knob of chain A protruding into a hole in
chain D or vice-versa. We only show motifs larger than 20Å2 to avoid clutter.
There are three large motifs (in front on the left view and on the left in the right
view) that form significant knob-into-hole structures. The four smaller motifs
mirror this knob-into-hole pattern, albeit less dramatically.

212 J.M. Phillips, J. Rudolph, and P.K. Agarwal

Algorithm 3.1. Find-Motifs(Σ, τ)
1: U : set of interior vertices of Σ.
2: while (maxv∈U K(v) ≥ τ) do
3: Let v = arg maxv∈U K(v); U := U \ {v}.
4: if (v ∈ rim(M) ∩ rim(M ′) ∧ ς(M) �= ς(M ′)) then
5: Mark v as a dam vertex.
6: else
7: if (v is not a rim vertex) then
8: Create a new motif M = {v}; ς(M) = sign(H(v)).
9: else

10: Merge all motifs whose rim contains v into a single motif M .
11: Add v to M .
12: Compute rim(M).
13: for all r ∈ rim(M) do
14: Recompute K(r) as described in Section 3.1.

Fig. 3. Interface surface and motifs for 1brsAD from two views. Darkly shaded motifs
and lightly shaded motifs have opposite signs of H , meaning they are protruding in
different directions. The rims are the edges in bold, except between the dam vertices
where they have light dashes.

3.1 Computing the Curvature on the Rim

To compute the curvature for vertices on the rim we implicitly remove the ver-
tices of the motif and treat this part of the surface as if Saran wrap was placed
over the removed motif. The idea is that, if an entire motif is chopped off then
the surface around it should appear flat; however, if part of the motif is chopped
off then the vertices on the rim are now at the tip of a motif and thus should still
have large curvature. Actually reconstructing this Saran wrap surface is difficult,
and in general can not be done without adding new vertices. However, we can
conservatively approximate the star of any vertex in the rim without constructing
the full Saran wrap surface. For a vertex r ∈ rim(M) we call St(r) \ St(M)—the
part of the star of r outside of M—the upper star of r and we denote it St+(r).

Segmenting Motifs in Protein-Protein Interface Surfaces 213

Similarly, the lower star of r is denoted St−(r) = St(r) ∩ St(M). We compute
the upper normal of r,

n+
r =

⎛⎝ ∑
t∈St+(r)∩T

αr,tnt

⎞⎠/⎛⎝ ∑
t∈St+(r)∩T

αr,t

⎞⎠ .

If ς(M) is negative (the surface is curving away from n+
r) we define hr as the

highest vertex in rim(M) \ {r}, in the direction of n+
r . If ς(M) is positive (the

surface is curving towards n+
r), we define hr as the lowest vertex in rim(M)\{r}.

We then construct a new star of r by using St+(r) and replacing St−(r) with
the two faces and the edge connecting hr to the part of St+(r) that is incident
to M , as in Figure 4. The choice of hr from rim(M)\ {r} causes the new surface
around r to be as flat as possible. Using the reconstructed star of r, K(r) can
be computed as before.

M
hrr

St+(r) rim(M)

n
+

r

Fig. 4. Recreation of St(r) on rim(M). St+(r) is colored lighter. The Saran wrap surface
is colored darker.

3.2 Choosing the Threshold τ

Algorithm 3.1 can be run incrementally by gradually lowering τ . At certain
values of τ a new vertex v is handled in Step 3. Let τv denote the threshold τ
at which v first becomes part of a motif M . Often the value K(r) for a vertex
r ∈ rim(M) increases when reevaluated on the rim and sometimes becomes
greater than τv. In this case τr = τv and r is immediately handled before τ is
lowered. This process often continues until a large motif has been created. As
a result, motifs usually grow in large spurts at particular thresholds, as seen in
Figure 5. Eventually, as τ becomes quite small, U becomes empty. This means
flat parts of the surface have become part of motifs, often concatenating several
large motifs. Choosing an appropriate value of τ in Algorithm 3.1 will halt the
algorithm before this later stage happens.

Although any threshold between 0.3 and 0.4 radians seems to work reason-
ably well for most surfaces, we can do better by choosing τ for each surface

214 J.M. Phillips, J. Rudolph, and P.K. Agarwal

individually. For instance, surfaces bent around a protein often require larger
thresholds, while relatively flat surfaces often require smaller ones. Instead of
trying to quantify this bend, we find the threshold that optimizes a score func-
tion over the motifs.

As a vertex v is added to a motif M it is given a weight

w(v) = Area(St+(v)) · τv

which is equal to τv times the area that M is incremented. The value τv is never
increasing during the algorithm, so vertices added earlier are given more weight.

Motifs are also given a penalty for merging. The penalty p(M) is initially set
to 0. When M merges with another smaller motif, M ′, p(M) is incremented by
Area(M ′). When a smaller motif is merged with a larger motif, it disappears so
its score is essentially set to 0. Each motif M is given a score

sτ (M) =
∑
v∈M

w(v) − p(M)

for its state at a threshold τ . Thus larger motifs are given more weight, especially
if they are created at an early stage. However, if they merge, their scores are
heavily penalized. An entire surface is given a score

Sτ (Σ) = sign(ξτ (Σ))
√
|ξτ (Σ)| , where ξτ (Σ) =

∑
M∈Σ

sign(sτ (M)) · sτ (M)2.

As τ decreases, Sτ (Σ) usually increases to an optimal value and then decreases
as the motifs grow too large and merge. The value of Sτ (Σ) as well as the values
sτ (M) for all motifs in Σ are plotted in Figure 5 for the interface surface for
1nmbN{L,H}. The score is calculated by running Algorithm 3.1 for τ set to
.50 through .25 at .01 intervals. The threshold which returns the largest score
Sτ (Σ) is used, which in this case is τ = 0.34. The interface surface and motifs for
1nmbN{L,H} are also shown for different values of τ . Only motifs with surface
area larger than 20Å2 are displayed to avoid clutter.

τ (radians)

S(Σ)
optimal threshold τ = 0.34

s
c

o
re

τ = 0.28 τ = 0.31

Fig. 5. Plot of S(Σ) and s(M) for all motifs on interface surface for 1nmbN{L,H}.
(top) Interface surface of 1nmbN{L,H} at τ = {0.27, 0.31, 0.34, 0.37, 0.40}. (bottom)

Segmenting Motifs in Protein-Protein Interface Surfaces 215

4 Applications

The reproducible and automated identification of motifs on the interface surface
provides a novel tool for biochemists to characterize protein-protein interactions.
We present here two preliminary forays into possible applications. Just as the
designation of α-helices and β-sheets has helped enhance the understanding of
the structure of a protein beyond what could be extracted from the atomic
coordinates and their ordering on the backbone alone, we envision interface
motifs having the same contributions for understanding the structure of the
protein-protein interface.

4.1 Visualizing the Motifs on the Interface Surface

To readily visualize these structures we have integrated the motifs into the MAPS
site [2]. The MAPS software contains a database of over 150 protein-protein in-
terfaces. It displays both a flattened version of the interface and a 3D version
embedded within the protein structures, side-by-side. By flattening the interface,
the 3D structure is removed so that the physical and chemical properties from
one or both sides can be more easily visualized. Mapping the motifs into this flat-
tened view reintroduces structural information and allows for facile comparisons
between knobs and holes and physical and chemical properties.

Figure 6 shows a snapshot of the MAPS software displaying the interface
surface for 1brsAD. On the left is the standard 3-dimensional view embedded in
the structures of the protein. In the middle the flattened interface is colored by its
motifs as seen from chain D. The two shades of motifs correspond to either chain
A protruding into chain D or vice-versa. The thick black lines show the outline
of the surface patches corresponding to different residues. Note how the large

Fig. 6. Snapshot of MAPS software: Shows interface surface 1brsAD with protein com-
plex drawn as a stick model (left), motifs on flattened interface (middle), and residue
type on flattened interface. Motif corresponding to Asp35 is highlighted in all views.

216 J.M. Phillips, J. Rudolph, and P.K. Agarwal

lightly shaded motifs are at the junction of many residue patches wherein the
hole in chain D, made by the knob in chain A, is composed of multiple residues.
On the other hand, the darkly shaded motifs are generally at the center of a
single residue patch wherein the knob in chain D consists of only one residue.
This pattern is reversed if the other side of the interface is shown. On the right
the flattened interface is colored by its amino acid composition as seen from
chain D. A single motif is highlighted in all views. Note the large overlap of the
highlighted motif with Asp35, one of the key hotspot residues in chain D of the
1brsAD complex.

4.2 Hotspot Residues and Motifs

Hotspot residues for a protein complex are those few residues (5-10%) at a
protein interface whose mutation leads to a significant reduction in the binding
energy (ΔΔG ≥ 2 kcal/mol) [4]. The identification of hotspots is not necessarily
a matter of trivial inspection as essentially any type of residue can be a hotspot.
Thus various computational methods have been developed to predict hotspots,
relying either on traditional force fields [9,14] or simpler physical energy functions
parameterized on experimental data [8,11], with reasonable to good results.

Intuitively their exists a potential relationship between motifs and hotspot
residues. In particular, one might expect prominent knobs associated with a sin-
gle residue to be likely hotspot residues. For illustration we consider the complex
1brsAD. For the 14 residues on the interface characterized by mutation [16] we

o
v
e
r
la

p
a
r
e
a

p
e
r
c
e
n
t

o
f
r
e
s
id

u
e

in
o
v
e
r
la

p

ΔΔG (kcal/mol)

Fig. 7. Plots comparing hotspot residues to motifs on the interface surface 1brsAD.
Top chart plots the area of the overlap between the hotspot residue and the motif best
covering it on the interface surface versus ΔΔG of that residue. Bottom chart plots
the percent of the residue area which is in the overlap region versus the ΔΔG of the
residue.

Segmenting Motifs in Protein-Protein Interface Surfaces 217

compare each residue to the motif which has the largest area of overlap on the
interface surface. That is, for each residue we compute the area of overlap and
the percent of its area that is in this overlap region. In Figure 7 we plot these val-
ues versus the ΔΔGs of the mutated residues. Three residues, including Asp35,
are clearly identified as hotspots whereas three hotspot residues with ΔΔG > 4
kcal/mol are not identified by this method. Satisfyingly, none of the non-hotspot
residues are incorrectly labeled as such.

Future inquires into this relationship will incorporate a larger dataset of
hotspot residues and the chemical properties of the potential hotspot residues.

5 Future Work

In addition to a possible correlation with hotspot residues, we envision that our
structural annotation tool could aid other biological applications. For instance,
statistical analysis may reveal preferred knob residues whose identification may
be useful for prediction of protein docking. Moreover, overlaying motifs from
different interfaces may lead to classifications by size or shape that can be useful
for describing recurring interfacial motifs. Also, by observing higher order rela-
tionships of motif arrangements on the protein interface (tertiary structures),
we envision new ways of comparing and classifying protein-protein complexes.

Acknowledgments

We thank Tammy Bailey and Herbert Edelsbrunner for observations and sugges-
tions and Jeffrey Headd for help integrating the motifs into the MAPS software.

References

1. P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang. Extreme elevation on
2-manifold. Proc. 20th ACM Symp. on Computational Geometry SoCG’04, 2004.

2. Y.-E.A. Ban, P.L. Brown, H. Edelsbrunner, J.J. Headd, and J. Rudolph.
MAPS: Protein docking interfaces. http://biogeometry.cs.duke.edu/research/
docking/index.html, May 2006.

3. Y.-E.A. Ban, H. Edelsbrunner, and J. Rudolph. Interface Surface for Protein-
Protein Complexes. in press, J. ACM.

4. A.A. Bogan and K.S. Thorn. Anatomy of hot spots in protein interfaces. J. of
Molecular Biology, 280:1–9, 1998.

5. C.S. Chua and R. Jarvis. Point signatures: A new representation for 3d object
recognition. Int’l J. of Computer Vision, 25(1):63–85, 1997.

6. M.L. Connolly. Shape complementarity at the hemoglobin α1β1 subunit interface.
Biopolymers, 25(7):1229–1247, 1986.

7. M.P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall,
Upper Saddle River, NJ, 1976.

8. R. Guerois, J.E. Nielsen, and L. Serrano. Predicting changes in the stability of
proteins and protein complexes: A study of more than 1000 mutations. J. of
Molecular Biology, 320:369–387, 2002.

218 J.M. Phillips, J. Rudolph, and P.K. Agarwal

9. S. Huo, I. Massova, and P.A. Kollman. Computational alanine scanning of the
1:1 human growth hormone-receptor complex. J. of Computational Chemistry,
23:15–27, 2002.

10. S. Jones and J.M. Thornton. Analysis of protein-protein interaction sites using
surface patches. J. of Molecular Biology, 272:121–132, 1997.

11. T. Kortemme and D. Baker. A simple physical model for binding energy hot spots
in protein-protein complexes. Proc. National Academy of Science USA, 99:14116–
14121, 2002.

12. L. Lo Conte, C. Chothia, and J. Janin. The atomic structure of protein-protein
recognition sites. J. of Molecular Biology, 285:2177–2198, 1999.

13. D.G. Lowe. Object recognition and local scale-invariant features. Proc. 7th IEEE
Int’l Conf. on Computer Vision ICPV’99, 2:1150–1157, 1999.

14. I. Massova and P.A. Kollman. Computational alanine scanning to probe protein-
protein interactions: A novel approach to evaluate binding free energies. J. of the
American Chemical Society, 121:8133–8143, 1999.

15. M. Meyer, M. Desbrun, P. Schröder, and A.H. Barr. Discrete differential-geometry
operators for triangulated 2-manifolds. Visualization and Mathematics III, 2003.

16. G. Schreiber and A.R. Fersht. Energetics of protein-protein interactions: Analysis
of the barnase-barstar interface by single mutations and double mutation cycles.
J. of Molecular Biology, 248:478–486, 1995.

17. L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based
on immersion simulations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(6):583–598, 1991.

18. Y. Wang, P.K. Agarwal, P. Brown, H. Edelsbrunner, and J. Rudolph. Coarse and
reliable geometric alignment for protein docking. 10th Pacific Symp. on Biocom-
puting PSB’05, pages 64–75, 2005.

19. Y. Wang, B.S. Peterson, and L.H. Staib. 3d brain surface matching based on
geodesics and local geometry. Computer Vision and Image Understanding, 89:252–
271, 2003.

20. D. Xu, C.-J. Tsai, and R. Nussinov. Hydrogen bonds and salt bridges across
protein-protein interfaces. Protein Engineering, 10(9):999–1012, 1997.

Protein Side-Chain Placement Through MAP

Estimation and Problem-Size Reduction

Eun-Jong Hong and Tomás Lozano-Pérez

Computer Science and Artificial Intelligence Lab, MIT,
Cambridge, MA 02139, USA
{eunjong, tlp}@mit.edu

Abstract. We present an exact method for the global minimum energy
conformation (GMEC) search of protein side-chains. Our method con-
sists of a branch-and-bound (B&B) framework and a new subproblem-
pruning scheme. The pruning scheme consists of upper/lower-bounding
methods and problem-size reduction techniques. We explore a way of
using the tree-reweighted max-product algorithm for computing lower-
bounds of the GMEC energy. The problem-size reduction techniques are
necessary when the size of the subproblem is too large to rely on more ac-
curate yet expensive bounding methods. The experimental results show
our pruning scheme is effective and our B&B method exactly solves pro-
tein sequence design cases that are very hard to solve with the dead-end
elimination.

1 Introduction

A computational approach to the protein structure prediction problem is to
solve the “inverse folding problem”: to find a sequence or conformation that
will fold to the target structure [1]. In this approach, the search of the mini-
mum energy conformation is an important computational challenge. Two major
applications where finding the minimum energy conformation is useful and nec-
essary are the conformation modeling (homology modeling) problem [2] and the
sequence design problem [3]. In finding the minimum energy conformation, the
problem is discretized and simplified by computing the interaction energies only
for some finite number of fixed side-chain conformations of each residue type [4].
These conformations are chosen by their statistical significance and are called
rotamers. With the rotamer model, the energy function of a protein sequence
folded into a specific template structure can be described in terms of [5]: (1)
Etemplate – the self-energy of a backbone template, (2) E(ir) – the interaction
energy between the backbone and rotamer conformation r at ith position, (3)
E(irjs) – the interaction energy between rotamer conformation r at position i
and rotamer conformation s at position j, i �= j. Then, the energy of a protein
sequence in a specific template structure and conformation C = {ir} is writ-
ten as E(C) = Etemplate +

∑
i E(ir) +

∑
i

∑
j>i E(irjs). Note that Etemplate is

constant by definition, and therefore can be ignored when minimizing E(C). A
conformation that minimizes E(C) is often called the global minimum energy

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 219–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

220 E.-J. Hong and T. Lozano-Pérez

conformation (GMEC). In this work, we call the problem of finding the GMEC
for a given set of rotamers and energy terms as the “GMEC problem”.

The GMEC problem is a strongly NP -hard optimization problem. Despite
the theoretical hardness, one finds that many instances of the GMEC problem
are easily solved by the exact method of dead-end elimination (DEE) [5]. Pop-
ularly used elimination procedures such as Goldstein’s conditions [6] combined
with splitting [7], the magic bullet heuristic [8], and unification [6] are often able
to reduce the problem size dramatically, while demanding only reasonable com-
putational resources. However, we still find sequence design cases where DEE
requires impractical amount of time and space. Other than DEE, there exist
various exact approaches for the GMEC problem. Gordon and Mayo [9] used a
variant of the branch-and-bound (B&B) method. Althaus et al. [10], Eriksson
et al. [11], and Kingsford et al. [12] present integer linear programming (ILP)
approaches. Leaver-Fay et al. [13] and Xu [14] describe methods based on tree-
decomposition. Xie and Sahinidis [15] describes several residue-reduction and
rotamer-reduction techniques. Each approach has advantages depending on the
characteristics of the data, but most of them have not attempted to solve hard
protein design cases, where there exist interactions between all possible pairs of
positions and a large number of similar rotamers are allowed for each position.
There also exist approximate approaches such as Yanover and Weiss [16] who
used belief-propagation methods to solve side-chain placement problems.

In this work, we present an alternative exact solution method for the GMEC
problem. Figure 1 illustrates the method. Our method consists of a B&B frame-
work and a new subproblem-pruning scheme. The pruning scheme consists of
upper/lower-bounding methods and problem-size reduction techniques. The ba-
sis for our upper/lower-bounding method is approximate maximum-a-priori
(MAP) estimation. Particularly, we explore a way of using the tree-reweighted
max-product algorithm (TRMP) [17]. The problem-size reduction techniques
are necessary when TRMP can only compute weak bounds but the size of the
subproblem is too large to rely on more accurate yet expensive bounding meth-
ods. Through an iterative use of several reduction techniques, we can obtain a
problem of reasonable size that can be effectively lower-bounded. Such reduc-
tion techniques guarantee that the given subproblem can be pruned against an
upper-bound U if the reduced subproblem can be pruned against U . On the
other hand, if we are lucky, a subproblem can be also quickly solved using DEE
only. The experimental results show that the running time of our pruning scheme
is comparable to linear programming (LP) but our method is more effective in
pruning subproblems than LP. We also find our B&B method exactly solves
sequence design cases that are very hard to solve with DEE.

2 GMEC Problem as MAP Estimation

Probabilistic inference problems [18] involve a vector of random variables x =
(x1, x2, . . . , xn) characterized by a probability distribution p(x). In this work, the
GMEC problem is formulated as a MAP estimation problem that asks to find the

Protein Side-Chain Placement 221

1

2 11

high

3

low

8

high

4

low

7

high

9

low

10

high

5

low

6

highlow

1. Direct solution by DEE

2. Pruning scheme
(1) Upper/lower-bounding by TRMP

(2) Problem-size reduction by:
elimination by TRMP lower-bounds,
rotamer-contraction,
edge-deletion,
DEE

Fig. 1. An overview of the exact method for the GMEC problem. The method consists
of a branch-and-bound framework and a pruning scheme, which in turn is composed
of bounding by TRMP and a collection of problem-size reduction techniques. Labels
on branches are related to the splitting scheme, and the numbers marked on the nodes
correspond to the order by which the nodes are visited.

maximum a posteriori (MAP) assignment x∗ such that x∗ = arg maxx∈X p(x),
where X is the sample space for x. In the GMEC problem, we number the
sequence positions by i = 1, . . . , n, and associate with each position i a discrete
random variable xi that ranges over Ri, a set of allowed rotamers at position i.
Then, we can define a probability distribution p(x) over X = R1 × . . .×Rn as

p(x) = exp{−e(x)}/Z, (1)

for a normalization constant Z and e(x) =
∑n

i=1 ei(xi) +
∑n−1

i=1

∑n
j=i+1

eij(xi, xj), where ei(r) = E(ir) for r ∈ Ri, and eij(r, s) = E(irjs) for (r, s) ∈
Ri × Rj . Therefore, the GMEC problem for minimizing e(x) is equivalent to
the MAP estimation problem for p(x). A probability distribution over a ran-
dom vector can be related to a graphical model [18]. An undirected graphical
model G = (V , E) consists of a set of vertices V for random variables and a set
of edges E connecting some pairs of vertices. In the MAP estimation equivalent
of our GMEC problem, the graphical model is generally a complete graph with
n vertices.

Wainwright et al. [17] presents an algorithm called tree-reweighted max-
product algorithm that can find a MAP assignment for loopy graphical mod-
els. The basic idea of the tree-reweighted max-product algorithm is to use a set
of spanning-trees T such that every vertex and edge of G are covered by some
T ∈ T . Kolmogorov noted [19] that we may define T as a set of (not necessarily
spanning) trees that cover the graph. In what follows, we will use a variant of
Wainwright et al.’s algorithm that lets us use an arbitrary tree cover, and call
it TRMP without presenting the details of the algorithm. Although TRMP is
not guaranteed to always find the optimal solution, it can be used as an upper-
bounding tool for the GMEC problem in the same way that the conventional
max-product algorithm is used as an upper-bounding tool on loopy graphs [16].

222 E.-J. Hong and T. Lozano-Pérez

In addition, it can also provide useful lower-bounds for the GMEC problem,
which will be explained in Section 4.1.

3 General Pair-Flags

We use general pair-flags to constrain the conformation space X . For example, if
the pair-flag for (ir, js) is set, all conformations in Z = {x ∈ X|(xi, xj) = (r, s)}
are excluded from the search space, i.e. the GMEC problem is solved over X\Z.
However, unlike in DEE, this does not generally imply min{x|(xi,xj)=(r,s)} e(x) >
minx e(x). We will denote the set of pair-flags for the given GMEC problem as
P̃ (possibly empty) and define pair-flag functions from P̃ as g̃ij(r, s, P̃) = 1 if
(ir, js) ∈ P̃ , and 0 otherwise. We also let g̃(x, P̃) =

∑
i,j∈V,i�=j g̃ij(xi, xj , P̃).

By defining P ({e}, U)
def
= {(ir, js) | min{x|(xi,xj)=(r,s)} e(x) > U}, we have the

following lemma regarding minimization under pair-flag constraints:

Lemma 1. For any P̃ and P̃ ′ such that P̃ ⊂ P̃ ′ and P̃ ′\P̃ ⊂ P ({e}, U),
min{x|g̃(x,P̃ ′)=0} e(x) is either infeasible or greater than U if and only if
min{x|g̃(x,P̃)=0} e(x) is either infeasible or greater than U .

The implication of Lemma 1 is that given a subproblem min{x|g̃(x,P̃)=0} e(x)
in the B&B-tree, the subproblem can be pruned if and only if the modified
subproblem min{x|g̃(x,P̃ ′)=0} e(x) can be pruned. In addition, we can also show
min{x|g̃(x,P̃ ′)=0} e(x) = min{x|g̃(x,P̃)=0} e(x) if min{x|g̃(x,P̃)=0} e(x) ≤ U .

In what follows, when we need to mention pair-flag information, we will im-
plicitly assume we have some P̃ , and use the notation g̃(x) instead of g̃(x, P̃)
where specifying P̃ is not particularly necessary. The following condition on pair-
flags can be maintained without loss of generality and will be used in Section 4:

Condition 1. For all r ∈ Ri and i ∈ V, there exists s ∈ Rj for each j ∈ V , j �= i

such that (ir, js) /∈ P̃ .

4 Problem-Size Reduction Techniques

4.1 Elimination by TRMP Lower-Bounds

We can exploit the properties of TRMP in computing a lower-bound of the min-
imum conformation energy for some given set of conformations. If such a lower-
bound is greater than U , we can eliminate corresponding conformations from
the problem while conserving the inequality relation between min{x|g̃(x)=0} e(x)
and U . In addition, if min{x|g̃(x)=0} e(x) ≤ U , the elimination does not change
the optimal value. In this section, we first review the key properties of Wain-
wright et al.’s algorithm – ρ-reparameterization and tree-consistency of pseudo-
max-marginals, before presenting how to compute the lower-bounds. Note that
TRMP shares these properties.

Protein Side-Chain Placement 223

Single max-marginals μi [17] are defined as the maximum of p(x) when one
of the variable xi is fixed, i.e. μi(xi) = κi max{x′|x′

i=xi} p(x′). Similarly, pairwise
max-marginals μij are defined as μij(xi, xj) = κij max{x′|(x′

i,x
′
j)=(xi,xj)} p(x′).

Note that κi and κij are constants that can vary depending on i or j. It is known
that any tree-distribution p(x) can be factored in terms of its max-marginals
as p(x) ∝

∏
i∈V μi(xi)

∏
(i,j)∈E

μij(xi,xj)
μi(xi)μj(xj)

. Max-marginals for tree-distributions
can be exactly computed by the conventional max-product algorithm. Wain-
wright et al. [17] use the notion of pseudo-max-marginals. By construction,
pseudo-max-marginals ν = {νi, νij} from the tree-reweighted max-product algo-
rithm satisfy ρ-reparameterization, i.e.

p(x) ∝
∏

T∈T

⎡⎣ ∏
i∈V(T)

νi(xi)
∏

(i,j)∈E(T)

νij(xi, xj)
νi(xi)νj(xj)

⎤⎦ρ(T)

, (2)

where ρ(T) = |{T∈T }|
|T | . A tree-distribution pT (x; ν) for given pseudo-max-

marginals can be defined as

pT (x; ν)
def
=
∏

i∈V(T) νi(xi)
∏

(i,j)∈E(T)
νij(xi,xj)

νi(xi)νj(xj)
.

Then, we have p(x) ∝
∏

T∈T {pT (x; ν)}ρ(T) from (2). On the other hand, pseudo-
max-marginals ν∗ at convergence of the tree-reweighted max-product algorithm
satisfy tree-consistency condition with respect to every spanning tree T ∈ T .
More precisely, ν∗ is tree-consistent with respect to a spanning tree T if it sat-
isfies ν∗

i (xi) ∝ maxxj∈Rj ν∗
ij(xi, xj) for all xi ∈ Ri and (i, j) ∈ E(T).

In what follows, we assume ν is in a normal form [19], i.e. maxr∈Ri νi(r) = 1
for all i ∈ V , and max(r,s)∈Ri×Rj

νij(r, s) = 1 for all (i, j) ∈ E . Then, since ν al-
ways satisfies ρ-reparameterization, rearranging the terms of (2) gives, for some
constant νc > 0,

p(x) = νc

∏
i∈V νi(xi)ρi

∏
(i,j)∈E

(
νij(xi,xj)

νi(xi)νj(xj)

)ρij

,

where ρij = |{T∈T | (i,j)∈E(T)}|
|T | and ρi = |{T∈T | i∈V(T)}|

|T | .
The following lemmas show how we can compute lower-bounds for some sets

of conformations. For example, Lemma 2 combined with (1) can provide rotamer
lower-bounds i.e. a lower-bound of min{x|xζ=r} e(x) for each r ∈ Rζ and ζ ∈ V :

Lemma 2. When ν satisfies the tree-consistency condition, we have, for all r ∈
Rζ , ζ ∈ V, max{x|xζ=r} p(x) ≤ νcνζ(r)ρζ .

For rotamer-pair lower-bounds, i.e. to lower-bound min{x|(xζ,xη)=(r,s)} e(x), we

use max{x|(xζ,xη)=(r,s)} p(x) ≤ νc

∏
T∈T

[
max{x|(xζ,xη)=(r,s)} pT (x)

]ρ(T),
where max{x|(xζ,xη)=(r,s)} pT (x) for each T can be easily solved using Lemma 3
when we let T = S, a set of stars:

Lemma 3. When ν satisfies the tree-consistency condition, the following in-
equalities hold:

224 E.-J. Hong and T. Lozano-Pérez

1. if ζ, η /∈ V(T), then max{x|(xζ,xη)=(r,s)} pT (x) = 1.
2. if ζ ∈ V(T) and η /∈ V(T), then max{x|(xζ,xη)=(r,s)} pT (x) = νζ(r).
3. if (ζ, η) ∈ E(T), then max{x|(xζ,xη)=(r,s)} pT (x) = νζη(r, s).
4. if ζ, η ∈ V(T) and (ζ, η) /∈ E(T) for a star T (let ξ be the center of T), then

max{x|(xζ,xη)=(r,s)} pT (x) = maxxξ∈Rξ

νξζ(xξ,r)νξη(xξ,s)
νξ(xξ) .

If we use pair-flags, we may improve rotamer lower-bounds by the inequality
max{x|xζ=r,g̃(x)=0} p(x) ≤ νc

∏
T∈T

[
max{x|xζ=r,g̃(x)=0} pT (x)

]ρ(T) ≤ νcνζ(r)ρζ ,
which holds for tree-consistent ν. Let nrot be the average number of rotamers
per position. If we use a naive search, it takes O(n2

rotn) comparison operations
to exactly solve max{x|xζ=r,g̃(x)=0} pT (x). Therefore, computing an improved
lower-bound for a rotamer takes O(n2

rotn
2) since |T | = O(n).

4.2 Rotamer-Contraction

The idea of rotamer contraction is to reduce the number of rotamers at one
selected position by first clustering similar rotamers of the position and replacing
all rotamers in each cluster with one rotamer-aggregate. Let ζ be the position
whose rotamers we partition into a number of clusters C1, . . . , Cl, l < |Rζ |. Then,
we contract all rotamers r ∈ Ck as one rotamer-aggregate ck. The contracted
GMEC problem has a new conformation space X rc, which is same as X except
that Rζ is replaced by {c1, . . . , cl}. Then, we define a new energy function erc(x)
over X rc and the set of pair-flags P̃ rc so that the optimal value of the contracted
problem min{x∈X rc|g̃(x,P̃ rc)=0} erc(x) is a lower-bound of min{x∈X|g̃(x,P̃)=0} e(x).
One way of choosing erc(x) for a given clustering is given by contract-rotamers in
Algorithm 1. We use notation erc(x, P̃) to indicate the function is also defined by
P̃ . A lower-bounding technique similar to rotamer-contraction is used by Koster
et al. [20] for the frequency assignment problem. We have the following lemma
on contract-rotamers :

Lemma 4. For any given clustering of rotamers of ζ ∈ V, if {x ∈ X|g̃(x, P̃) =
0} �= φ, then min{x∈X|g̃(x,P̃)=0} e(x) ≥ min{x∈X rc|g̃(x,P̃ rc)=0} erc(x, P̃).

In rotamer-contraction, how we cluster rotamers of position ζ determines the qual-
ity of resulting lower-bounds. Our approach is a greedy scheme that keeps plac-
ing rotamers in a cluster as long as the decrease in the optimal value is less than
or equal to a specified amount. However, it is hard to exactly know the decrease
min{x∈X|g̃(x,P̃)=0} e(x)−min{x∈X rc|g̃(x,P̃ rc)=0} erc(x, P̃). In addition, it is gener-
ally not feasible to bound the decrease since rotamer-contractionmay even turn an
infeasible subproblem into a feasible one. We instead upper-bound ΔOPT rc def

=
minx∈X e(x) − min{x∈X rc|g̃(x,P̃ rc)=0} erc(x, P̃). Let U rc

ΔOPT (P̃) = maxk=1,...,l

minr∈Ck

∑
j∈Γ (ζ) max{s∈Rj |(ζck

,js)/∈P̃ rc}{eζj(r, s) + eζ(r)
|Γ (ζ)| − erc

ζj(ck, s, P̃)}. Then,
we have the following lemma:

Lemma 5. For any given clustering of rotamers of ζ ∈ V, we have ΔOPT rc ≤
U rc

ΔOPT (P̃) ≤ U rc
ΔOPT (φ)

Protein Side-Chain Placement 225

Algorithm 1: contract-rotamers
Data: ζ, C1, . . . , Cl, X , {e}, P̃
Result: X rc, {erc}, P̃ rc

begin
X rc is same with X except Rζ is replaced with {c1, . . . , cl}
P̃ rc ← P̃\{(ζr, js), j ∈ V, j �= ζ}
foreach Ck, k = 1, . . . , l do

foreach s ∈ Rj, j ∈ V, j �= ζ do
erc

ζj(ck, s, P̃) ← min{r∈Ck,(ζr ,js)/∈P̃} eζj(r, s) +
eζ (r)

|Γ (ζ)| ,

if (ζr, js) ∈ P̃ for all r ∈ Ck then P̃ rc ← P̃ rc ∪ (ζck , js)

erc
ζ (ck) ← 0.

define erc(x) same as e(x) for other terms
end

Note that U rc
ΔOPT (P̃) has a finite value due to Condition 1. Lemma 4 and

Lemma 5 suggests rotamer-contraction may benefit from the use of pair-flags
by smaller decrease in the optimal value, and better upper-bounding of the de-
crease. We include a rotamer in a cluster if U rc

ΔOPT (P̃) from the inclusion is less
than some constant Δrc. When minx e(x) > U , Δrc can be allowed to be at
most minx e(x)−U or some fraction of it. Since we do not know the exact value
of minx e(x), Δrc is heuristically set as a fraction of the difference between an
upper-bound of minx e(x) and U . Both upper-bounds are obtained by TRMP.

4.3 Edge Deletion

In edge deletion, we first identify a pair of positions (ζ, η) such that the de-
viation in eζη(r, s) for all (r, s) ∈ Rζ × Rη is small, then set all the pairwise
energies of (ζ, η) to the minimum of the pairwise energies. That is, the new en-
ergy function eed(x) will be defined to be the same as e(x) except eed

ζη(r, s) =
min{(r,s)∈Rζ×Rη|(ζr ,ηs)/∈P̃} eζη(r, s), for all (r, s) ∈ Rζ × Rη. Since eed

ζη(xζ , xη) is
constant, we can ignore the interaction of (ζ, η) and replace E by E\(ζ, η). The
same idea is explored by Xie and Sahinidis [15] as an approximation procedure.
Some advantages of doing edge-deletion are: (1) when the graph becomes sparse,
we may use direct solution techniques such as dynamic programming. (2) Empir-
ically, being able to cover the graph with fewer trees is favorable for obtaining
tighter lower-bounds from TRMP. (3) Rotamer-contraction may obtain fewer
clusters for the same Δrc. The pair-flags are kept intact through edge-deletion
even for the edge being deleted. Then, it is straightforward to obtain similar
properties for edge-deletion as Lemma 4 and 5.

5 Branch-and-Bound Framework

We split a subproblem by dividing rotamers of a position into two groups by
their rotamer lower-bounds. If the conformation space of the current subproblem

226 E.-J. Hong and T. Lozano-Pérez

F i is defined by rotamer sets {Ri} and we decide to split it into F i,low (low-
subproblem) and F i,high (high-subproblem), we can define the conformation
space for each with {Rlow

i } and {Rhigh
i }, respectively, where Rlow

i and Rhigh
i

are defined the same as Ri except Rlow
ζ ∪ Rhigh

ζ = Rζ , |Rlow
ζ | ≈ |Rhigh

ζ |, and
LB(ζr) ≤ LB(ζs) for all r ∈ Rlow

ζ , s ∈ Rhigh
ζ (LB(ζr) is a rotamer lower-

bound for ζr). The goal of such a splitting scheme is to make the optimal value
of F i,low likely to be less than that of F i,high. We prefer a splitting position
ζ whose difference between maximum and minimum rotamer lower-bounds is
large. Subproblems are selected by a mix of what are called “best-first” and
“depth-first” strategies: (1) follow the depth-first strategy, (2) always dive into
F i,low first when the current subproblem F i is split. The goal is first to find a
good upper-bound by following depth-first through the low-subproblems from
the first series of splittings, then to prune the remaining subproblems using
the upper-bound. Figure 1 shows an example B&B-tree that can result from our
splitting scheme and subproblem-selection strategy, where optimal solution from
node 5 is supposed to provide a near-optimal upper-bound.

6 Experimental Results

In our numerical experiments, a Linux workstation with a 2.2 GHz Intel Xeon
processor and 3.5 GBytes of memory was used. Table 1 shows 12 protein design
cases used in the experiments. DEE on each case was performed with the fol-
lowing options: Goldstein’s singles elimination, splitting with split flags (s = 1),
Goldstein’s pair elimination with one magic bullet, and unification allowing max-
imum 6,000 rotamers per position. E-9 was finished in 4.8 hours but none of
others were solved within 48 hours.

We first show an example use of TRMP lower-bounds in eliminating ro-
tamers or rotamer-pairs of subproblems from E-10. In the following, we use the

Table 1. Test cases facts. All cases are from the antigen-antibody model system.
Each case repacks the antigen protein or the antibody. Each column represents (1)
case name, (2) number of positions, (3) maximum number of rotamers offered at a
position, (4) number of total rotamers, (5) n

i=1 log10 |Ri|, (6) case composition (with
m: # positions allowed to mutate, n: # positions only wild-types are allowed, and
w: # water molecules to be oriented at the interface). R uses the standard rotamer
library, and E multiplies each of χ1 and χ2 by a factor of 3 by adding ±10◦. E-1 were
offered only hydrophobic residues while others were offered both hydrophobic and polar
residues. All energies were calculated using the CHARMM package and the parameter
set ’param22’.

Case n max |Ri| |Ri| log10conf Composition Case n max |Ri| |Ri| log10conf Composition

R-1 34 125 1422 30.0 34 m E-5 24 1344 9585 49.6 24 m
R-2 30 133 1350 40.2 30 m E-6 36 1984 8543 59.1 4 m, 32 n
E-1 19 617 3675 38.1 19 m E-7 10 2075 5201 21.9 5 m, 3 n, 2 w
E-2 23 1370 9939 52.3 23 m E-8 10 1915 5437 20.7 4 m, 4 n, 2 w
E-3 23 1320 8332 49.1 23 m E-9 15 2091 5700 25.1 3 m, 6 n, 6 w
E-4 15 1361 7467 33.9 15 m E-10 23 1949 9837 42.5 7 m, 7 n, 9 w

Protein Side-Chain Placement 227

Table 2. TRMP lower-bounding results for subproblems of E-10. The meaning of each
column is, in order: (1) subproblem, (2) number of rotamers, (3) number of rotamer-
pairs, (3) median rotamer lower-bound(lb) when not using pair-flags, (4) number of
rotamers such that lb > U , (5) median rotamer lower-bound when using pair-flags,
(5) number of rotamers such that lb > U , (6) median rotamer-pair lower-bound, (7)
number of rotamer-pairs such that lb > U . The value of U is -325.038. +∞ implies the
lower-bounding problem turned out to be infeasible due to pair-flags.

Rot-lb’s w/o pair-flags Rot-lb’s w/ pair-flags Rot-pair lb’s
Subprob. #rots #rot-pairs med. lb #rots lb > U med. lb #rots lb > U med. lb #pairs lb > ub

2-high 3,345 4,769,691 -332.831 1,301 +∞ 2,220 -312.544 4,071,145
3-high 3,022 3,879,787 -315.025 1,134 +∞ 2,141 -313.614 3,328,424
4-high 2,665 3,036,834 -315.689 1,380 +∞ 2,273 -313.276 2,799,272
5-high 2,281 2,299,981 -336.173 81 -336.173 920 -323.780 1,292,520
6-high 2,171 2,071,431 -343.019 0 -343.019 200 -330.363 590,576
7-high 1,964 1,702,980 -342.556 8 -342.556 215 -329.554 508,750
8-high 1,848 1,499,857 -344.865 0 -344.636 42 -335.640 218,324
9-high 1,669 1,223,065 -337.791 0 -337.791 289 -329.037 384,812

notation “i-high” to denote the high-subproblem at depth i spawned from the
first depth-first dive along the low-subproblems (root node is at depth 1). For
example, in Figure 1, node 11 is 2-high and node 6 is 5-high. Table 2 shows
lower-bounding results for subproblems at depth 2 to 11. In 2-high, simple
rotamer lower-bounds were able to eliminate 39% of rotamers. However, we ob-
tain even more elimination when we use rotamer lower-bounds computed using
pair-flags. This is due to massive flagging of rotamer-pairs by rotamer-pair lower-
bounds. Large elimination obtained for subproblems at small depth are due to
our splitting scheme of dividing rotamers by their lower-bounds.

To evaluate our pruning scheme, we compared it (call it PbyR: prune-by-
reduction) against linear programming (LP). We used subproblems of various
sizes generated while solving the design cases of Table 1 with our B&B method.
We used the LP formulation given by Wainwright et al. [17] and solved it with
a C++ procedure using CPLEX 8.0 library. In PbyR, we alternated rotamer-
contraction and edge-deletion at every iteration. At every 8th reduction, we
applied DEE to see if we could solve the reduced problem or only to flag more
rotamer/rotamer-pairs. (Note that we adapted DEE to make it compatible with
general pair-flags.) We computed TRMP lower-bounds at every 24th reduction
and flagged rotamers/rotamer-pairs. We allowed at most 300 reductions until we
find a lower-bound greater than U or exactly solve the reduced problem. Figure 2
shows the result for the 156 subproblems remaining after excluding the subprob-
lems that could be solved quickly by DEE alone. The bounding times of the two
methods are comparable although LP is slightly faster in small to medium-
sized subproblems. However, Figure 2 (b) shows that the bounds from PbyR are
greater than LP bounds except for the one data point below the y = x line.
Note that a PbyR bound for a subproblem is not generally a lower-bound of the
subproblem’s optimal value since rotamer/rotamer-pair elimination by TRMP
lower-bounds can also increase the optimal value. However, a PbyR bound is

228 E.-J. Hong and T. Lozano-Pérez

log10 LP time

lo
g 1

0
P

by
R

ti
m

e

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

(a) log10 LP time vs. log10 PbyR time.

LP bound - GMEC energy

P
by

R
b
ou

n
d

-
G

M
E

C
en

er
gy

-30 -25 -20 -15 -10 -5 0 5

-15

-10

-5

0

5

10

15

20

(b) (LP bound - GMEC energy) vs. (PbyR

bound - GMEC energy).

Fig. 2. Comparison of LP and PbyR in pruning subproblems from B&B. In (b), a
circle represents the PbyR bound was computed using less than 50 reductions. Also in
(b), points such that PbyR bound - GMEC energy ≥ 20 were all clamped at 20.

greater than U only if the original subproblem’s optimal value is greater than
U . Therefore, if we had U equal to the GMEC energy for each design case, we
could immediately prune the subproblems corresponding to the data points over
the horizontal solid line in Figure 2 (b). There was no such case with LP among
the tested subproblems. Figure 2 (b) suggests that performing reductions more
than 50 times often resulted in lower-bounds that were useless for pruning.

Finally, we used the B&B method of Figure 1 to solve each design case. The
branch-and-bound method was implemented in C++ using the PICO-library [21]
as a sequential B&B framework. At each node of the B&B method, we first
eliminated rotamers using DEE with the same set of options mentioned earlier.
When singles-elimination condition of DEE fails to eliminate any rotamer, we
let TRMP lower-bounds eliminate more rotamers. Then, we used the reduction
techniques iteratively in the same mix as we used for comparison test against LP,
but limited the number of reductions to be at most four times the depth of the
node in the B&B-tree. When branching was necessary, the subproblem located
at the end of the first dive usually had

∑n
i=1 log10 |Ri| ≤ 13 and was exactly

solved by DEE. Table 3 shows the result. We were able to solve six cases at
the root node without branching. Considering DEE couldn’t finish five of them

Table 3. Solving the design cases using our B&B method. Each column represents (1)
case name, (2) number of branches, (3) number of branches from the first depth-first
dive along the low-subproblems, (4) total solution time.

Case # Br. #F.D.Br. Time (h) Case # Br. #F.D.Br. Time (h) Case # Br. #F.D.Br. Time (h)

R-1 0 0 1.1 E-3 0 0 6.4 E-7 15 12 6.9
R-2 14 14 2.7 E-4 0 0 4.2 E-8 17 12 13.7
E-1 28 28 9.7 E-5 8 8 27.2 E-9 0 0 3.3
E-2 0 0 6.2 E-6 0 0 5.6 E-10 202 35 139.1

Protein Side-Chain Placement 229

for 48 hours, rotamer/rotamer-pair elimination using TRMP lower-bounds enor-
mously reduced the solution time. All cases were also solved efficiently except
E-10 where the upper-bounds (from TRMP) of the subproblems were often very
close to the GMEC energy. However, in all cases, the number of total branching is
only moderately larger than that from the first dive. In all cases where branching
was necessary, the upper-bound obtained at the end of the first dive was equal
to the GMEC energy, confirming that our branching scheme and subproblem-
selection strategy meets expectations.

7 Conclusion

In this work, we presented an exact solution method for the GMEC problem. Our
branch-and-bound method using the suggested pruning scheme was able to solve
hard sequence design cases that DEE couldn’t solve within practical resources
levels. There is certainly a decision-making flavor in using our proposed pruning
scheme since a trade-off between the amount of pruning effort and the quality
of the final bound should be considered in deciding when to stop the pruning
attempt and to split the subproblem. Therefore, future work may include a sys-
tematic allocation of pruning effort throughout the B&B-tree for faster solution.

Acknowledgment. The authors would like to thank Bruce Tidor for suggest-
ing the problem and for helpful advice. Shaun Lippow, Alessandro Senes, and
Michael Altman gave freely of the test cases, and the DEE code.

References

1. Drexler, K.E.: Molecular engineering: an approach to the development of general
capabilities for molecular manipulation. Proc. National Academy of Sciences USA
78 (1981) 5275–5278

2. Vasquez, M.: Modeling sidechain conformation. Current Opinion in Structural
Biology 6 (1996) 217–221

3. Hellinga, H.W., Richards, F.M.: Optimal sequence selection in proteins of known
structure by simulated evolution. Proc. National Academy of Sciences USA 91
(1994) 5803–5807

4. Janin, J., Wodak, S., Levitt, M., Maigret, B.: Conformation of amino-acid side-
chains in proteins. J. of Molecular Biology 125 (1978) 357–386

5. Desmet, J., De Maeyer, M., Hazes, B., Lasters, I.: The dead-end elimination the-
orem and its use in protein side-chain positioning. Nature 356 (1992) 539–542

6. Goldstein, R.F.: Efficient rotamer elimination applied to protein side-chains and
related spin glasses. Biophysical J. 66 (1994) 1335–1340

7. Pierce, N.A., Spriet, J.A., Desmet, J., Mayo, S.L.: Conformational splitting: a
more powerful criterion for dead-end elimination. J. of Computational Chemistry
21 (2000) 999–1009

8. Gordon, D.B., Mayo, S.L.: Radical performance enhancements for combinatorial
optimization algorithms based on the dead-end elimination theorem. J. of Com-
putational Chemistry 13 (1998) 1505–1514

230 E.-J. Hong and T. Lozano-Pérez

9. Gordon, D.B., Mayo, S.L.: Branch-and-terminate: a combinatorial optimiza-
tion algorithm for protein design. Structure with Folding and Design 7 (1999)
1089–1098

10. Althaus, E., Kohlbacher, O., Lenhof, H.P., Müller, P.: A combinatorial approach
to protein docking with flexible side-chains. J. of Computational Biology 9 (2002)
597–612

11. Eriksson, O., Zhou, Y., Elofsson, A.: Side chain-positioning as an integer program-
ming problem. In: Proc./ 1st Workshop on Algorithms in Bioinformatics WABI’01.
Volume 2149 of LNCS., Springer (2001) 128–141

12. Kingsford, C., Chazelle, B., Singh, M.: Solving and analyzing side-chain positioning
problems using linear and integer programming. Bioinformatics 21 (2005) 1028–
1036

13. Leaver-Fay, A., Kuhlman, B., Snoeyink, J.: An adaptive dynamic programming
algorithm for the side-chain placement problem. In: Proc. Pacific Symp. on Bio-
computing PSB’05, Singapore, World Scientific (2005) 16–27

14. Xu, J.: Rapid protein side-chain packing via tree decomposition. In: Proc. Conf.
on Research in Mol. Comput. Biol. RECOMB’05. Volume 3500 of LNCS., Springer
(2005) 423–439

15. Xie, W., Sahinidis, N.V.: Residue-rotamer-reduction algorithm for the protein
side-chain conformation problem. Bioinformatics 22 (2006) 188–194

16. Yanover, C., Weiss, Y.: Approximate inference and protein-folding. In: Proc. of
Neural Information Processing Systems. (2002)

17. Wainwright, M.J., Jaakola, T.S., Willsky, A.S.: Map estimation via agreement on
(hyper)trees: Message-passing and linear programming approaches. Technical Re-
port UCB/CSD-3-1269, Computer Science Division (EECS), UC Berkeley (2003)

18. Jordan, M.I.: Graphical models. Statistical Science (Special Issue on Bayesian
Statistics) 19 (2004) 140–155

19. Kolmogorov, V.: Convergence tree-reweighted message passing for energy mini-
mization. Technical Report MSR-TR-2005-38, Microsoft Research (2005)

20. Koster, A.M., van Hoesel, S.P., Kolen, A.W.: Lower bounds for minimum inter-
ference frequency assignment problems. Technical Report RM 99/026, Maastricht
University (1999)

21. Eckstein, J., Phillips, C.A., Hart, W.E.: Pico: an object oriented framework form
parallel branch and bound. Technical report, RUTCOR (2001)

On the Complexity of the Crossing Contact Map

Pattern Matching Problem

Shuai Cheng Li and Ming Li

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo ON N2L 3G1 Canada
{scli, mli}@cs.uwaterloo.ca

Abstract. Contact maps are concepts that are often used to represent
structural information in molecular biology. The contact map pattern
matching (CMPM) problem is to decide if a contact map (called the
pattern) is a substructure of another contact map (called the target).
In general, the problem is NP-hard, but when there are restrictions on
the form of the pattern, the problem can, in some case, be solved in
polynomial time. In particular, a polynomial time algorithm has been
proposed [1] for the case when the patterns are so-called crossing con-
tact maps. In this paper we show that the problem is actually NP-hard,
and show a flaw in the proposed polynomial-time algorithm. Through
the same method, we also show that a related problem, namely, the
2-interval patten matching problem with {<, �}-structured patterns and
disjoint interval ground set, is NP-hard.

1 Introduction

Contact-maps are graph theoretic concepts that are often used in protein struc-
ture analysis [2]. The contact map matching problem (CMPM) is to decide if a
contact map, called the pattern, is a substructure of another contact map, called
the target. This problem is NP-hard in the most general case, but some cases
with restrictions on the form of patterns to be matched have been shown to
be solvable in polynomial time. In this paper we consider the case where the
pattern is a crossing contact map. It is not previously known if there exists a
polynomial-time algorithm in this case [1].

This problem is closely related to an open problem known as the 2-interval
pattern matching problem, which came about from the study of interactions
of ribonucleic acids. The complexity of this problem was first investigated by
Vialette [3], and then followed by Blin et. al. [4]. Crochemore et. al. proposed
approximation algorithms on optimization versions of the problem [5]. The prob-
lem of whether the 2-interval pattern matching problem has a polynomial-time
algorithm with disjoint interval ground sets and {<, �}-structured patterns, was
left unanswered in these works.

Gramm [1] proposed a polynomial-time algorithm that would solve the above
two problems. Regrettably, we noticed a flaw in an assumption made by the
algorithm. We show in this paper that the two problems are actually NP-hard.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 231–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

232 S.C. Li and M. Li

This paper is organized as follows. In Section 2 we give the definitions and
problem statements. In Section 3, we give a polynomial reduction from the Clique
Problem to the two problems, thus showing them to be NP-hard. In Section 4,
we give a concrete counterexample that the algorithm in [1] would produce an
incorrect solution.

2 Problem Definition and Previous Results

We follow the notations from [1]. A contact map consists of a pair (S,A), where
S is a set of integers, and A consists of a set of ordered pairs, which is: A =
{(sl, sr)|sl, sr ∈ S, sl < sr}. A pair (sl, sr) is referred to as an arc. We denote
L((sl, sr)) = sl and R((sl, sr)) = sr.

The contact map pattern matching (CMPM) problem is: Given two contact
maps CM(Sp,Ap) (called the pattern) and CM(S,A) (called the target) where
|Sp| ≤ |S|, find a subset S′ of S with |S′| = |Sp|, such that there is a one-
one mapping M from the elements of S to the elements of S′ that satisfies the
following two conditions:

– if s1, s2 ∈ Sp and s1 < s2, then M(s1),M(s2) ∈ S′ and M(s1) < M(s2).
– if (s1, s2) ∈ Ap, then (M(s1),M(s2)) ∈ A.

If such a mapping exists, we say that CM(Sp,Ap) occurs in CM(S,A). In gen-
eral, the CMPM problem is NP-hard [2,3]. However, some cases with restrictions
on the patterns have been shown to be solvable in polynomial time. To state these
restrictions, we first define the following three types of relations between any two
given arcs a = (sl, sr), a′ = (s′l, s

′
r):

– a < a′ (a is less than a′) iff sr < s′l
– a � a′ (a is nested in a′) iff s′l < sl < sr < s′r
– a � a (a crosses a′) iff sl < s′l < sr < s′r

A contact map (S,A) is called a crossing contact map (CCM) iff ∀a, a′ ∈ A,
a �= a′, one of the relations: a < a′, a′ < a, a � a′ or a′ � a is satisfied.
A CCM is also called a {<, �}-structured contact map. Other types of contact
maps can be defined similarly, such as {<}, or {�, �}-structured contact maps.
The CMPM problem with {<}, {�}, {�}, or {<, �}-structured patterns can be
solved in polynomial time, but is NP-hard for the {�, �} and {<, �, �}-structured
patterns [3]. In this paper, we are interested in the remaining case of when the
patterns are CCMs. The following formally states the problem:

Crossing Contact-map pattern matching (CCMPM)Problem [1]
Input: Contact maps CM(Sp,Ap) and CM(S,A) with CM(Sp,Ap) as a CCM

Output: Does CM(Sp,Ap) occur in CM(S,A)?

On the Complexity of the Crossing Contact Map Pattern Matching Problem 233

3 Hardness Results

We use the Clique Problem, a well known NP-hard problem, for reduction in
this paper. Let an instance of the Clique Problem be given by a graph G(V , E)
and by a positive integer �. For notation simplicity, define n = |V| and without
loss of generality, assume V = {1, . . . , n}.

In the following, we will first define some terms to facilitate the presentation
of the reduction. We will then construct (1) a target map CM(SG ,AG), and (2)
a pattern CM(Sn,�,An,�) with parameters � and n, from a given graph G(V , E).
We will then analyze the reduction and show its correctness.

3.1 Additional Notation and Definitions

A set A of k distinct arcs where ∀a, a′ ∈ A, either a � a′ or a′ � a, is called a
k-arc crossing cluster. Given two disjoint sets of arcs A1, A2, we say A1 crosses
A2, or A2 is crossed by A1 (written A1 � A2), just in case either (1) ∀a1 ∈ A1,
∀a2 ∈ A2, a1 � a2, or (2) if one of A1 or A2 is an empty set. A1 < A2 (A1 is less
than A2, or A2 is greater than A1), and A1 � A2 (A1 is nested in A2) can be
defined similarly. We also say an arc a crosses a set of arcs A to mean {a} � A
(the cases for � and < can be defined similarly).

For any three sets of arcs A1, A2 and A3, we say that

– A3 is from A1 to A2 iff A1 < A2 and A1 � A3, A3 � A2, and
– A3 is anchored by A1 and A2 iff A1 < A3 and A2 � A3.

Given two point sets S1 and S2, we write S1 <S2 iff ∀s1∈S1 and ∀s2∈S2, s1 < s2.
For a arc set A, we denote L(A) =

⋃
a∈A{L(a)}, and R(A) =

⋃
a∈A{R(a)}.

The subscript ‘∗’ is a special symbol which matches every defined subscript.
That is, A∗,j refers to the set {Aij |Ai,j is defined}, and A∗,∗ refers to the set of
all Ai,j that has been defined.

If CM(Sn,�,An,�) occurs in CM(SG ,AG), there exists a one-one mapping M
between elements in An,� and some elements in AG . Here, we extend the defini-
tion of the mapping to any set A′

p ⊆ An,�, such that M(A′
p) =

⋃
a∈A′

p
{M(a)}.

3.2 Target Contact Map Construction

In this Section, we construct a target contact map CM(SG ,AG) from a given
graph G(V , E). We first build some large crossing clusters, and then we construct
the arcs which connect these clusters.

Large Crossing Clusters. Firstly, we construct 2n+2 crossing clusters, which
are H , Zu (1 ≤ u ≤ n), T and Vu (1 ≤ u ≤ n). H is a 28n4-arc crossing cluster,
Zu is a 5n3-arc crossing cluster, T is a 9n4-arc crossing cluster and Vu is a 5n3-
arc crossing cluster. Let Z =

⋃n
u=1 Zu and V =

⋃n
i=1 Vu. Furthermore we define

the following order for these large clusters:

H < Z1 < . . . < Zn < T < V1 < . . . < Vn

234 S.C. Li and M. Li

Arcs from H to Zu. There is a 2-arc crossing cluster from H to Zu for
each u, 1 ≤ u ≤ n. Denote the two arcs as Au,1, and Au,2, Au,1 � Au,2. Let
Au = {Au,1, Au,2}. Furthermore, we define the following orders:

H � Au, Au � Zu 1 ≤ u ≤ n (1)
Au1 � Au2 , 1 ≤ u1 < u2 ≤ n (2)

Equation 1 ensures that Au is from H to Zu. Equation 2 forces that at most one
pair of arcs in A∗,∗can be included in a CCM.

Let A =
⋃n

u=1 Au, it is clear that |A| = 2n.

Arcs from Zu to Zv. There are two types of arcs from Zu to Zv (1 ≤ u <
v ≤ n): Eu,v and Cu,v. Eu,v consists of u crossing clusters, denoted Eu,v,w,
1 ≤ w ≤ u. Each cluster Eu,v,w contains 3 arcs, respectively Eu,v,w,1, Eu,v,w,2

and Eu,v,w,3 with Eu,v,w,1 � Eu,v,w,2, Eu,v,w,1 � Eu,v,w,3 and Eu,v,w,2 � Eu,v,w,3.
Each Cu,v is a single arc. We now define orders among the arcs E∗,∗,∗,∗ and C∗,∗
which are needed for our proof. Diagrams of these orders are depicted in the
Appendix.

Firstly, we ensure that Eu,∗,∗,∗ and Cu,∗ are crossed by Zu, while E∗,v,∗,∗ and
C∗,v crosses Zv:

Zu � Eu,∗,∗,∗, Zu � Cu,∗, 1 ≤ u ≤ n− 1 (3)
E∗,v,∗,∗ � Zv, C∗,v � Zv, 2 ≤ v ≤ n (4)

Secondly, we define the orders among the arcs which are crossing Zv (2 ≤ v ≤
n):

R(E∗,v,1,∗) < R(E∗,v,2,∗) < . . . < R(E∗,v,v−1,∗) < R(C∗,v) (5)
R(E∗,v,w,1) < R(E∗,v,w,2) < R(E∗,v,w,3), 1 ≤ w < v (6)
Ev−1,v,w,i � Ev−2,v,w,i � . . . � Ew,v,w,i, 1 ≤ w < v, 1 ≤ i ≤ 3 (7)
Cv−1,v � Cv−2,v � . . . � C1,v (8)
E∗,v,∗,∗ � Av, C∗,v � Av (9)

Equation 5 ensures that for the arcs crossing Zv, the right endpoints are ordered
according to the 3rd subscripts. Also the right endpoints for C∗,v should be
greater than the right endpoints of E∗,v,∗,∗. Furthermore, Equation 6 orders
(the right endpoints) of E∗,v,w,∗ according to the 4th subscripts for any given v
and w, and then Equation 7 orders them by their first subscripts. Equation 8
defines the order between the arcs of C∗,∗, and at most one arc in C∗,v can be
selected for a CCM. Equation 9 defines the relations between the arcs of C∗,v,
E∗,v,∗,∗ and Av,∗. If Av,∗ is selected for a CCM, then none of the arcs in E∗,v,∗,∗
and C∗,v can be used.

Thirdly, for the arcs which are crossed by Zu (1 ≤ u ≤ n − 1), we introduce
the orders as below:

Eu,u+1,w,∗ � Eu,u+2,w,∗ � . . . � Eu,n,w,∗, 1 ≤ w ≤ u (10)
Cu,u+1 � Cu,u+2 � . . . � Cu,n (11)

On the Complexity of the Crossing Contact Map Pattern Matching Problem 235

Equation 10 ensures that for any given u and w, at most one 3-arc crossing clus-
ter can be chosen for a CCM, namely Eu,v,w,∗ for some v. Similarly Equation 11
ensures that for a given u, at most one arc in Cu,∗ appears in a CCM.

Lastly, we define the orders between those arcs which are crossed by Zz and
are crossing Zz (1 ≤ z ≤ n):

E∗,z,w,1 < Ez,∗,w,∗, E∗,z,w,2 � Ez,∗,w,∗, 1 ≤ w < z < n (12)
Az,1 < Ez,∗,z,∗, Az,2 � Ez,∗,z,∗, 1 ≤ z < n (13)
Az,2 < Cz,∗, 1 ≤ z < n (14)

Equation 12 ensures that the arcs from Zu for a given w is anchored by E∗,z,w,1

and E∗,z,w,2. Notice that for w = z, the set E∗,z,z,∗ is not defined. The arcs
Ez,∗,z,∗ is anchored by arcs Az,1 and Az,2 (by Equation 13). Combining with
Equation 3, Equation 14 ensures that arc Cz,∗ is anchored by arc Az,2 and arc
set Zz.

Denote C = C∗,∗, we know that |C| = 1/2(n2 − n). Let E = E∗,∗,∗,∗ and we
have |E| = 1/2(n3 − n).

Arcs from Zu to T . Arcs from Zu to T are denoted as Fu. Fu consists of u
2-arc crossing clusters, and the clusters are denoted as Fu,w, 1 ≤ w ≤ u. Fu,w

contains two arcs: Fu,w,1 and Fu,w,2, where Fu,w,1 � Fu,w,2. Firstly we ensure
that Fu is from Zu to T (1 ≤ u ≤ n):

Zu � Fu,∗,∗, Fu,∗,∗ � T.

Furthermore, we define the following orders:

E∗,u,w,1 < Fu,w,∗, E∗,u,w,2 � Fu,w,∗, 1 ≤ w < u ≤ n (15)
Au,1 < Fu,u,∗, Au,2 � Fu,u,∗, 1 ≤ u ≤ n (16)
Eu,∗,w,∗ � Fu,w,∗, 1 ≤ w ≤ u < n (17)
R(F∗,1,∗) < R(F∗,2,∗) < . . . < R(F∗,n,∗) (18)
R(F∗,w,1) < R(F∗,w,2), 1 ≤ w ≤ n (19)
Fn,w,i � Fn−1,w,i � . . . � Fw,w,i, 1 ≤ w ≤ n, 1 ≤ i ≤ 2 (20)

Equation 15 and 16 ensures that Fu,w,∗ are anchored by E∗,u,w,1 and E∗,u,w,2 or
by Au,1 and Au,2 respectively. Equation 17 ensures that if some arcs of Fu,w,∗
appears in a CCM, then none of the arcs of Eu,∗,w,∗ can appear in a CCM. The
right endpoints of F∗,∗,∗ are ordered according to their 2nd subscripts by Equa-
tion 18, and then by the 3rd subscript (by Equation19). Furthermore, Equation
20 ensures that only one arc is possible for a CCM in the set F∗,w,i for given w
and i.

Let F = F∗,∗,∗. Note that |F | = n2 + n.

Arcs from T to Vv and from Vu to Vv. Two types of arcs Iu,v and Pu,v are
defined. Iu,v and Pu,v are induced from the edges of G(V , E). Iu,v can be either
a 3-arc crossing cluster or an empty set. If Iu,v �= ∅, we denote the three arcs in

236 S.C. Li and M. Li

it as Iu,v,1, Iu,v,2 and Iu,v,3, with Iu,v,1 � Iu,v,2, Iu,v,1 � Iu,v,3 and Iu,v,2 � Iu,v,3.
Pu,v contains (n− v) crossing clusters, each cluster Pu,v,w (v < w ≤ n) is empty
or has 2 crossing arcs. If Pu,v,w �= ∅, we denote the two arcs as Pu,v,w,1 and
Pu,v,w,2, Pu,v,w,1 � Pu,v,w,2.

The arcs from T to Vv are in two sets: P0,v,w and I0,v. P0,v,w is a 2-arc crossing
cluster and I0,v is a 3-arc crossing cluster. They are all nonempty sets.

The edge information of G(V , E) is used to construct the arcs from Vu to Vv.
For the case Iu,v, 1 ≤ u < v ≤ n, if (u, v) /∈ EG Iu,v = ∅; otherwise (u, v) ∈ EG ,
Iu,v is a 3-arc crossing cluster.

For the case Pu,v,w, 1 ≤ u < v < w ≤ n, if (u, w) /∈ EG , we have Pu,v,w = ∅;
otherwise (u, w) ∈ EG ,we have Pu,v,w as a 2-arc crossing cluster.

Firstly we ensures that I0,∗,∗ and P0,∗,∗,∗ are crossed by T ; Iu,∗,∗ and Pu,∗,∗,∗
are crossed by Vu (1 ≤ u ≤ n− 1), and I∗,v and P∗,v,∗,∗ are crossing Vv:

T � I0,∗,∗, T � P0,∗,∗,∗ (21)
Vu � Iu,∗,∗, 1 ≤ u < n Vu � Pu,∗,∗,∗, 1 ≤ u < n− 1 (22)
I∗,v,∗ � Vv, 1 ≤ v ≤ n P∗,v,∗,∗ � Vv, 1 ≤ v < n (23)

For the arcs which are crossing Vv, we define the orders:

R(I∗,v,∗) < R(P∗,v,v+1,∗) 1 ≤ v ≤ n− 1 (24)
R(P∗,v,v+1,∗) < R(P∗,v,v+2,∗) < . . . < R(P∗,v,n,∗), 1 ≤ v ≤ n− 1 (25)
R(P∗,v,w,1) < R(P∗,v,w,2), 1 ≤ v < w ≤ n (26)
Pv−1,v,w,i � Pv−2,v,w,i � . . . � P0,v,w,i, 1 ≤ v < w ≤ n, 1 ≤ i ≤ 2 (27)
Iv−1,v,∗ � Iv−2,v,∗ � . . . � I0,v,∗, 1 ≤ v ≤ n (28)

Equation 25 ensures that for a given v, the right endpoints of P∗,v,∗,∗ are sorted
according to the third subscript. Then Equation 26 ensures that for any given v
and w, the right endpoints for P∗,v,w,∗ are sorted according to the forth subscript.
Further more, for any given v, w and i, Equation 27 ensures that at most one
arc in P∗,v,w,i can be selected for a CCM.

Next we introduce the orders for the arcs which are crossed by T , and the
arcs which are crossed by Vu:

Pu,u+1,w,∗ � Pu,u+2,w,∗ � . . . � Pu,n,w,∗, 0 ≤ u, u + 1 < w ≤ n (29)
Iu,w,∗ � Pu,∗,w,∗, 0 ≤ u, u + 1 < w ≤ n (30)

Equation 29 and 30 ensures that either (1) one 2-arc crossing cluster Pu,v,w,∗
can be selected for a CCM, or (2) the 3-arc crossing cluster Iu,w,∗ is selected for
a CCM, or (3) none of them are selected.

Furthermore, for the arcs which are crossed by T , we define the orders:

F∗,w,1 < I0,w, F∗,w,2 � I0,w, 1 ≤ w ≤ � (31)
F∗,w,1 < P0,∗,w,∗, F∗,w,2 � P0,∗,w,∗, 2 ≤ w ≤ � (32)

Equation 31 ensures that I0,w is anchored by F∗,w,1 and F∗,w,2, and Equation
32 ensured that P0,∗,w,∗ is anchored by F∗,w,1 and F∗,w,2.

On the Complexity of the Crossing Contact Map Pattern Matching Problem 237

Lastly, we define orders between those arcs are crossed by Vz and the arcs
which crosses Vz :

P∗,z,w,1 < Iz,w, P∗,z,w,2 � Iz,w, 1 ≤ z, z + 1 ≤ w ≤ n (33)
P∗,z,w,1 < Pz,∗,w,∗, P∗,z,w,2 � Pz,∗,w,∗, 1 ≤ z, z + 1 < w ≤ n (34)

Equation 33 ensures that Iz,w is anchored by P∗,z,w,1 and P∗,z,w,2, and Equation
34 ensured that Pz,∗,w,∗ is anchored by P∗,z,w,1 and P∗,z,w,2.

Let P = P∗,∗,∗,∗ and I = I∗,∗, it is not difficult to show that |P | ≤ 1/3(n3−n)
· |I| ≤ 3/2(n2 + n).

Let AG = H ∪A ∪C ∪ Z ∪E ∪ F ∪ I ∪ P ∪ V , and SG to be those endpoints
of the arcs in AG . The target contact map CM(SG ,AG) is fully specified. The
following results can be shown for CM(SG ,AG):

Lemma 1. (i) An arc a ∈ E crosses no more than 9n3 arcs.
(ii) An arc a ∈ F crosses no more than 17n4 arcs.
(iii) An arc a ∈ I crosses no more than 9n3.
(iv) |AG −H | < |H |.

Proof. We know that |A|+|C|+|E|+|F | ≤ 2n+1/2(n2−n)+1/2(n3−n)+(n2+
n) ≤ 4n3. The only possible arcs an arc a ∈ E can cross are from A, C, E, F ,
and Zu for some u with 1 ≤ u ≤ n.

Since except A, C, E, F , an arc a ∈ F may cross some arcs in P and I, and T
as well, we have |P |+ |I| < 4n3 and |T | = 9n4. For an arc a ∈ I, it only crosses
those arcs from P, I, and one Vu for some u with 1 ≤ u ≤ n. It is easy to verify
that |AG −H | < |H |.
�

3.3 Pattern Construction

Large Crossing Clusters. Similar to the target case, firstly, we construct
2�+2 crossing clusters, which are H ′, Z ′

u (1 ≤ u ≤ �), T ′ and V ′
u (1 ≤ u ≤ �). H ′

is a 28n4-arc crossing cluster. Z ′
u is a 5n3-arcs crossing cluster. T ′ is a 9n4-arc

crossing cluster. V ′
u (1 ≤ u ≤ �) is a 5n3-arc crossing cluster. We also denote

Z ′ =
⋃�

u=1 Z ′
u and V ′ =

⋃�
i=1 V ′

u. Furthermore we define the following order for
these large clusters:

H ′ < Z ′
1 < . . . < Z ′

� < T ′ < V ′
1 < . . . < V ′

�

Arcs from H ′ to Z′
1. There is a 2-arc crossing cluster from H ′ to Z ′

1, and is
denoted as A′. The two arcs are denoted as A′

1 and A′
2, A′

1 � A′
2. Furthermore,

A′ is from H ′ to Z ′
1:

H ′ � A′, A′ � Z ′
1 (35)

Arcs from Z′
u to Z′

u+1. There are two types of arcs from Z ′
u to Z ′

u+1: E′
u

and C′
u. C′

u is a single arc. E′
u contains u 3-arc crossing clusters, these clusters

are denoted as E′
u,w, 1 ≤ w ≤ u. For each cluster E′

u,w, the three arcs of it are

238 S.C. Li and M. Li

denoted as E′
u,w,1, E′

u,w,2 and E′
u,w,3 with E′

u,w,1 � E′
u,w,2, E′

u,w,1 � E′
u,w,3 and

E′
u,w,2 � E′

u,w,3

Firstly, we ensure that E′
u,∗,∗ and C′

u are from Z ′
u and to Z ′

u+1

Z ′
u � E′

u,∗,∗, E′
u,∗,∗ � Z ′

u+1, 1 ≤ u ≤ �− 1 (36)

Z ′
u � C′

u, C′
u � Z ′

u+1, 1 ≤ u ≤ �− 1 (37)

Furthermore, we define the following orders:

A′
1 < E′

1,∗,∗, A
′
2 � E′

1,∗,∗ (38)

E′
u,w1,∗ � E′

u,w2,∗, 1 ≤ w1 < w2 ≤ u ≤ �− 1 (39)

E′
u,w,1 < E′

u+1,w,∗, E
′
u,w,2 � E′

u+1,w,∗, 1 ≤ w ≤ u < �− 1 (40)

E′
u,∗,∗ � C′

u, 1 ≤ u ≤ �− 1 (41)

C′
u−1 < E′

u,u,∗ 2 ≤ u ≤ �− 1 (42)

E′
1,∗,∗ (a 3-arc crossing cluster) is anchored by A′

1 and A′
2 (Equation 38). Equa-

tion 39 ensures that arcs in Eu,∗,∗ forms a crossing cluster. Furthermore, Equa-
tions 40 ensures that the 3-arc crossing cluster E′

u+1,w,∗ is anchored by E′
u,w,1

and E′
u,w,2. Equation 41 means that the crossing cluster E′

u,∗,∗ crosses the arc
C′

u. Combining the information from Equation 36 and Equation 42, the arc set
E′

u,u,∗ is anchored by C′
u−1 and Z ′

u.
Let C′ = C′

∗ and E′ = E′
∗,∗,∗.

Arcs from Z′
� to T ′. The arcs from Z ′

� to T ′ are denoted as F ′. F ′ has �
crossing clusters, each crossing cluster contains 2 arcs. The crossing clusters are
denoted as F ′

w (1 ≤ w ≤ �), the two arcs in F ′
w are denoted as F ′

w,1 and F ′
w,2,

F ′
w,1 � F ′

w,2. Furthermore, we have the following orders:

V ′
� � F ′

∗,∗, F
′
∗,∗ � T ′ (43)

E′
�−1,w,1 < F ′

w,∗, E
′
�−1,w,2 � F ′

w,∗, 1 ≤ w ≤ �− 1 (44)

C′
�−1 < F ′

� (45)
F ′

w1,∗ � F ′
w2,∗, 1 ≤ w1 < w2 ≤ � (46)

Equation 43 ensures that F ′
∗,∗ is from V ′

� to T ′. F ′
w,∗ is anchored by E′

�−1,w,1

and E′
�−1,w,2 (Equation 44) and F ′

� is anchored by C′
�−1 and V ′

� (Equation 45).
Furthermore, arcs in F ′

∗,∗ forms a crossing cluster by Equation 46.

Arcs from T ′ to V ′
1 and from V ′

u to V ′
u+1. There are two types of arcs: I ′u,

(0 ≤ u < �), and P ′
u. I ′u (0 ≤ u < �− 1) is a 3-arc crossing cluster: the three arcs

being I ′u,1, I ′u,2 and I ′u,3, where I ′u,1 � I ′u,2, I ′u,1 � I ′u,3 and I ′u,2 � I ′u,3. P ′
u contains

(�−u−1) (0 ≤ u ≤ n−2) 2-arc crossing clusters, each cluster is denoted as P ′
u,w

(u + 1 < w ≤ �). Denote the 2 arcs of P ′
u,w as P ′

u,w,1 and P ′
u,w,2, P ′

u,w,1 � P ′
u,w,2.

On the Complexity of the Crossing Contact Map Pattern Matching Problem 239

Firstly we ensure that I ′0 and P ′
0,∗,∗ are crossed by T ′; Iu and Pu,∗,∗ are crossed

by V ′
u (1 ≤ u ≤ �− 1), and I ′u and P ′

u,∗,∗ crosses V ′
u+1:

T ′ � I ′0, T
′ � P ′

0,∗,∗ (47)

V ′
u � I ′u, 1 ≤ u < � (48)

V ′
u � P ′

u,∗,∗, 1 ≤ u < �− 1 (49)

I ′u,∗ � V ′
u+1, 0 ≤ u < � (50)

P ′
u,∗,∗ � V ′

u+1, 0 ≤ u < �− 1 (51)

Furthermore, arcs in I ′u and P ′
u,∗ forms a crossing cluster:

I ′u � P ′
u,∗, 0 ≤ u < �− 1 (52)

P ′
u,w1

� P ′
u,w2

, 0 ≤ u, u + 1 < w1 < w2 ≤ � (53)

Also we introduce the following orders:

F ′
1,1 < I ′0, F

′
1,2 � I ′0 (54)

F ′
w,1 < P ′

0,w, F ′
w,2 � P ′

0,w, 2 ≤ w ≤ � (55)

P ′
u,u+2,1 < I ′u+1, P

′
u,u+2,2 � I ′u+1, 1 ≤ u < � − 1 (56)

P ′
u,w,1 < P ′

u+1,w,∗, P
′
u,w,2 �< P ′

u+1,w,∗, 1 ≤ u, u + 2 < w ≤ � (57)

Equation 54 ensures that I ′0 is anchored by F ′
1,1 and F ′

1,2 and Equation 55 en-
sures that P ′

0,w is anchored by F ′
w,1 and F ′

w,2. I ′u+1 is anchored by P ′
u,u+2,1 and

P ′
u,u+2,2, and P ′

u+1,w,∗ is anchored by P ′
u,w,1 and P ′

u,w,2.
Let P ′ = P ′

∗,∗,∗ and I ′ = I ′∗.
A′

n,� = H ′∪A′∪C′∪Z ′∪E′∪F ′∪I ′∪P ′∪V ′ and S′
n,� are the endpoints of those

arcs in A′
n,�. It is not difficult to verify the following result by the constructions.

Lemma 2. CM(Sn,�,An,�) is a {<, �}-structuredcontactmap, and CM(SG ,AG)
is a {<, �, �}-structured contact map.

3.4 Correctness

According to the construction, we can prove the following results, proofs are
omitted.

Lemma 3. If CM(Sn,�,An,�) occurs in CM(SG ,AG), then ∀M, M(H ′) = H,
M(A′) = Au1,∗ for some u1, with 1 ≤ u1 ≤ n.

Lemma 4. If CM(Sn,�,An,�) occurs in CM(SG ,AG), then ∀M, M(E′
1,1,∗) =

Eu1,u2,u1,∗ and M(C′
1) = Cu1,u2 for some u1, u2 with 1 ≤ u1 < u2 ≤ n.

Lemma 5. If CM(Sn,�,An,�) occurs in CM(SG ,AG) and M(E′
1,1,∗) =

Eu1,u2,u1,∗, then M(E′
2,v,∗) = Eu2,u3,uv,∗ and M(C′

v) = Cuv ,uv+1 (v = 1, 2)
for some u3 with u2 < u3 ≤ n.

240 S.C. Li and M. Li

Lemma 6. If CM(Sn,�,An,�) occurs in CM(SG ,AG) and M(E′
k,v1,∗) =

Euk,uk+1,uv1 ,∗ and M(C′
v1

) = Cuv1 ,uv1+1 , (v1 = 1, . . . , k) for u1 < . . . <
uk+1 ≤ n, then M(E′

k+1,v2,∗) = Euk+1,uk+2,uv2 ,∗ and M(C′
v2

) = Cuv2 ,uv2+1

(v2 = 1, . . . , k + 1) for some uk+2 with uk+1 < uk+2 ≤ n.

By induction and Lemma 3-6, we have the following results:

Lemma 7. If CM(Sn,�,An,�) occurs in CM(SG ,AG), then ∀M,
M(E′

�−1,v,∗) = Eu�−1,u�,uv ,∗ and M(C′
�−1) = Cu�−1,u�

with v = 1, . . . , �− 1 and
for some u1, . . . , u�, 1 ≤ u1 < . . . < u� ≤ n.

Lemma 8. If CM(Sn,�,An,�) occurs in CM(SG ,AG), if M(E′
�−1,v,∗) =

Eu�−1,u�,uv ,∗ and M(C′
�−1) = Cu�−1,u�

for u1, ..., u� with 1 ≤ u1 < . . . < u� ≤ n,
then M(F ′

v,∗) = Fu�,uv,∗ (1 ≤ v ≤ �).

Lemma 9. If CM(Sn,�,An,�) occurs in CM(SG ,AG), then ∀M, M(I ′0,∗) =
I0,u1,∗, and M(P ′

0,v,∗) = P0,u1,uv,∗,(2 ≤ v ≤ �) for some u1, ..., u� with 1 ≤ u1 <
. . . < u� ≤ n.

Lemma 10. If CM(Sn,�,An,�) occurs in CM(SG ,AG), then ∀M, M(I ′w,∗) =
Iuw ,uw+1,∗, and M(P ′

w,v,∗) = Puw ,uw+1,uv ,∗(1 ≤ w < �, 1 ≤ w + 1 < v ≤ �) for
some u1, ..., u� with 1 ≤ u1 < . . . < u� ≤ n.

Then by the construction of CM(SG ,AG), we have:

Lemma 11. If CM(Sn,�,An,�) occurs in CM(SG ,AG), G has a size � clique.

Finally, the following Theorem can be shown:

Theorem 1. CM(V�,n, A�,n) occurs in (CMVG, AG) if and only if G contains
a clique with size �, and hence the CCMPM problem is NP-hard.

It may be noticed that we have shown a stronger result where the problem is
NP-hard even for the case that the target is a {<, �, �}-structured contact map
(in general, arcs in target can share endpoints). It is not difficult to perform
the same reduction for the 2-interval pattern matching problem with disjoint
interval ground set, and with {<, �}-structured pattern. Due to lack of space,
we omit the formal argument here.

The maximum contact-map overlap (CMO) problem with {<, �} structured
patterns is to find a maximized common CCM between two given contact maps.
The complexity of this problem was an open question [1]. We now show that the
problem is NP-hard using Theorem 1.

Theorem 2. The CMO problem is NP-hard.

Proof. Given a CCMPM problem instance: CM(Sp,Ap) and CM(S,A). Find
the maximized common CCM CM(S′

p,A′
p) between CM(Sp,Ap) and CM(S,A),

and then verify if CM(S′
p,A′

p) is identical to CM(Sp,Ap).
Clearly this reduction is polynomial. Thus the Theorem holds.
�

On the Complexity of the Crossing Contact Map Pattern Matching Problem 241

4 Counterexample for the Algorithm in [1]

In this section, we present a counterexample for the algorithm in [1]. The
example is displayed in Figure 1. The arcs are labeled with letters instead of
numbers for the ease of illustration. The pattern is a CCM with 24 arcs, while
the target contains 42 arcs, and is {<, �, �}-structured. The arcs are labeled in
the way that we intend to map an arc of a pattern to an arc of the target which is
labeled with the same letter in a different case.It can be verified that the pattern
does not occur in the target, but the algorithm in [1] produces a ‘yes’ answer.

Fig. 1. An Example Demonstrating the Flaw of the Algorithm (a) A {�, <}-Structured
CM as the Pattern (b) The Target CM

References

1. Gramm, J.: A polynomial-time algorithm for the matching of crossing contact-map
patterns. IEEE/ACM Trans. Comput. Biol. Bioinformatics 1 (2004) 171–180

2. Goldman, D., Papadimitriou, C., Istrail, S.: Algorithmic aspects of protein structure
similarity. In: Proc. 40th Symp. on Foundations of Computer Science FOCS’99,
IEEE Computer Society (1999) 512

3. Vialette, S.: On the computational complexity of 2-interval pattern matching prob-
lems. Theor. Comput. Sci. 312 (2004) 223–249

4. Blin, G., Fertin, G., Vialette, S.: New results for the 2-interval problem. In:
Proc. 15th Symp. Combinatorial Pattern Matching CPM’04. Volume 3109 of LNCS,
Springer-Verlag (2004) 311–322

5. Crochemore, M., Hermelin, D., Landau, G., S.Vialette: Approximating the 2-interval
pattern problem. In: Proc. 13th European Symp. Algorithms ESA’05. Volume 3669
of LNCS, Springer Verlag (2005) 426–437

A Fuzzy Dynamic Programming Approach to

Predict RNA Secondary Structure

Dandan Song and Zhidong Deng

Department of Computer Science and Technology, National Laboratory of
Information Science and Technology, Tsinghua University, Beijing 100084, China

sdd00@mails.tsinghua.edu.cn, michael@tsinghua.edu.cn

Abstract. Due to the recent discovery of many RNAs with great diver-
sity of functions, there is a resurgence of research in using RNA primary
sequences to predict their secondary structures, due to the discovery of
many new RNAs with a great diversity of functions. Among the pro-
posed computational approaches, the well-known traditional approaches
such as the Nussinov approach and the Zuker approach are essentially
based on deterministic dynamic programming, whereas the stochastic
context-free grammar (SCFG), the Bayesian estimation, and the parti-
tion function approaches are based on stochastic dynamic programming.
In addition, heuristic approaches like artificial neural network and genetic
algorithm have also been presented to address this challenging problem.
But the prediction accuracy of these approaches is still far from perfect.
Here based on the fuzzy sets theory, we propose a fuzzy dynamic pro-
gramming approach to predict RNA secondary structure, which takes
advantage of the fuzzy sets theory to reduce parameter sensitivity and
import qualitative prior knowledge through fuzzy goal distribution.
Based on the experiments performed on a dataset of tRNA sequences, it
is shown that the prediction accuracy of our proposed approach is signif-
icantly improved compared with the BJK grammar model of the SCFG
approach.

1 Introduction

Not just a passive carrier of genetic information, RNA molecules are found to
play many important roles in cell, such as regulatory and catalytic. Therefore, a
complete understanding of their functions is worth exploring. Similar to proteins,
the functions of RNA molecules are mainly determined by their structures. Since
experimental techniques such as X-ray crystallography and nuclear magnetic
resonance (NMR) to obtain the structure data usually require a great deal of time
and money, the gap between the exponentially exploding number of nucleic acid
sequences and the slowly accumulating number of structures data is expanding.

In recent years, many novel computational RNA structure analysis and pre-
diction approaches have been proposed. Early in 1978, Nussinov proposed a
maximal base-paring approach, which initiated a conversion of RNA secondary
structure prediction into an optimal decision problem and used a dynamic pro-
gramming approach to directly solve it [1]. This research work is undoubtedly

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 242–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A FDP Approach to Predict RNA Secondary Structure 243

of great significance although the resulting prediction accuracy is poor due to
its simplicity. Then Zuker developed a minimum free energy(MFE) approach
based on dynamic programming algorithm [2]. The earlier version of the Zuker
approach has been improved and implemented by several commonly-used pack-
ages as Mfold [3] and RNAfold(Vienna RNA Package)[4]. Apparently, either the
Nussinov approach or the Zuker approach and its improvements are based on
deterministic dynamic programming algorithm.

Stochastic approaches are also applied to RNA secondary structure prediction
problem, e.g., stochastic context-free grammars (SCFG) [5], Bayesian statisti-
cal [6], and partition function [7], all of which are based on stochastic dynamic
programming algorithm. Among these approaches, the SCFG approach is pre-
ferred due to its simple and suitable description of RNA secondary structure.
In addition, heuristic methods based on artificial neural network [8] and genetic
algorithm (GA) [9] have also been proposed.

However, all these promising methods still have several limitations. For ex-
ample, alternative suboptimal foldings are neglected by these approaches, but
they might actually pinpoint conserved regions of the RNA secondary structure.
Additionally, changes in the scoring parameters often lead to drastic alterations
of results.

Fuzzy set theory, originated by Zadeh [10] and dealing with a different kind of
uncertainty, is well suited for incorporating human experiences, due to the fact
that it can express the imprecision of meaning that may result from the use of
natural language as we define a model.

Dynamic programming [11] is one of the earliest methodologies to which fuzzy
sets theory has been applied, which directly results in the fuzzy dynamic pro-
gramming (FDP). In essence, the FDP is a recast of dynamic programming, and
has attracted wide attention in many fields during the last decades[12].

In this paper, we propose a FDP approach to predict RNA secondary struc-
ture, which takes advantage of fuzzy sets theory to reduce the parameter sensitiv-
ity, and imports qualitative prior knowledge by adding fuzzy goal distribution to
the prediction. Compared to the BJK grammar model of the SCFG approach,
which has been shown to have the best synthetical performance among nine
SCFG grammar models [13], our experiments performed on a dataset of tRNA
sequences show that the average prediction accuracy is increased by 5.34% (sen-
sitivity) and 4.05% (specificity) respectively.

2 Method

2.1 Fuzzy Modeling

Set Up Structure. Referring to the BJK grammar of the SCFG approach [14],
we define a fuzzy BJK (FBJK) structure model. In contrast to the original BJK,
however, the proposed FBJK model has several unique features. By incorporat-
ing the idea of the fuzzy sets theory, it is more suited to incorporate qualitative
subjective knowledge, which is beneficial to improve the prediction accuracy.

244 D. Song and Z. Deng

– State space:
In the FBJK structure model, three state subspaces are used: L, S, and F .
Each state subspace is composed of all allowed possible base pairs of the
given sequence, which is indicated by (i, j) (i(j) = 1, · · · , l, j ≥ i), where i
and j denote the bases and l denotes the sequence length. As a result, each
state subspace forms an upper triangle matrix, see Figure 1.

Fig. 1. One layer of state space

– Fuzzy sets of observable characters:
The observable characters contain four bases {A, C, G, U}, and depending
on whether they are base-paired or base-unpaired we define two fuzzy sets
of observable characters Pair and Single. In this case, Pair is composed of
all possible base-pairs and can be expressed by a 4 × 4 membership func-
tion matrix as Eqs. (1). Single includes the four single bases and can be
represented by an 1× 4 membership function vector as Eqs. (2).

μPair =

⎡⎢⎢⎣
μAA μAC μAG μAU

μCA μCC μCG μCU

μGA μGC μGG μGU

μUA μUC μUG μUU

⎤⎥⎥⎦ (1)

μSingle =
[
μA μC μG μU

]
. (2)

– Admissible fuzzy decision set:

Ut ∈ U = {U1, U2, U3, U4, U5, U6}.

where each fuzzy decision Ui corresponds to a state transition rule, which is
given by Eqs.(3)-(8). For each of the three state subspaces, i.e., L, S, and
F , all the fuzzy decisions are classified as three admissible fuzzy decision

A FDP Approach to Predict RNA Secondary Structure 245

subsets, that is, UL,US ,UF ⊆ U.

U1 ∈ UL : If Xt is L(i, j) and Ut is U1,

then Xt+1 is F (i + 1, j − 1) and Pair(i, j);
(3)

U2 ∈ UL : If Xt is L(i, i) and Ut is U2,

then Xt+1 is Single(i);
(4)

U3 ∈ US : If Xt is S(i, j) and Ut is U3,

then Xt+1 is L(i, k) and S(k + 1, j) (i ≤ k < j);
(5)

U4 ∈ US : If Xt is S(i, j) and Ut is U4,

then Xt+1 is L(i, j);
(6)

U5 ∈ UF : If Xt is F (i, j) and Ut is U5,

then Xt+1 is L(i, k) and S(k + 1, j) (i ≤ k < j);
(7)

U6 ∈ UF :If Xt is F (i, j) and Ut is U6,

then Xt+1 is F (i + 1, j − 1) and Pair(i, j).
(8)

– Optimal fuzzy policy:
The fuzzy policy is a subsequence of fuzzy decisions at the current and past
states. Accordingly, the fuzzy policy that has the biggest membership degree
is defined as the optimal fuzzy policy at stage k. So we have

μ(U∗
0 ,U∗

1 , · · · ,U∗
k−1) = max

U0,U1,··· ,Uk−1
μ(U0,U1, · · · ,Uk−1), (9)

where k denotes the number of stages. For the RNA secondary structure
prediction problem, k refers to the average length of RNA subsequences.

– Fuzzy goal:
As a fuzzy set, the universe of fuzzy goal is specified to be the set of the
bases in the given sequence, while its linguistic variables are specified to
be ”3’-end of hairpins”, which are conservative features of RNA secondary
structures as Figure 2.1 shows. More specifically, using the state transition
rules mentioned above, ”3’-end of hairpin” denotes the base coordinate i
when S(i, i) (i.e., S(i, j) satisfies i = j) is transferred to L(i, i) using the
fuzzy decision U4.

– Termination state set:
We use the FDP with an implicit termination time, whose current state Xt is
starting from the initiate fuzzy state and transferring according to the fuzzy
state transition rule of the current decision. When the current state attains
for the first time the termination state set, the process is terminated. Thus,
in our FBJK structure, the termination state set is specified to be the fuzzy
set of observable characters Single.

Estimate Parameters. The training samples datasets are used to estimate
parameters: fuzzy decision fitness and fuzzy goal distribution. The main idea
of our estimation method is fuzzy statistics, which is also called ’polling’ in

246 D. Song and Z. Deng

Fig. 2. Take a tRNA’s secondary structure as an example. The bases marked by black
circle indicate the 3’-end points of hairpins, which are taken as linguistic variables of
the fuzzy goal.

[15]. Compared with iterated learning methods, this method can greatly reduce
computational complexity and time. While there is sacrifice in accuracy, it can
basically satisfy the present requirement.

– Fuzzy decision fitness:
Here, each fuzzy decision for all fuzzy state is given the same fitness, which
is time and state independent μC(Ui). As transition rules currently used
are unambiguous, for each training sequence with its secondary structure
annotation, the fuzzy policy is unique. After occurrence number of each
decision is counted, the fitness of fuzzy decisions is determined from these
counts using a Laplace (plus-one) prior idea as equation (10) follows.

μC(U r
i) =

nr
i + 1∑

j nr
j + nr

, (10)

where nr
i is the occurrence number of the fuzzy decision U r

i and nr is number
of fuzzy decisions in the state subspace r. In our FBJK structure, nr = 2 for
r ∈ {L, S, F}.

– Membership of the elements in the fuzzy sets of observable characters:
The equations in the following are extensions of Laplace (plus-one) prior idea
to compute the membership of elements in Pair and Single.

μPair(X, Y) =
nX,Y + 1∑

X,Y nX,Y + 16
X(Y) ∈ {A, C, G, U}, (11)

μSingle(X) =
nX + 1∑
X nX + 4

X ∈ {A, C, G, U}. (12)

A FDP Approach to Predict RNA Secondary Structure 247

– Fuzzy goal distribution:
Typical membership functions are used to describe the distribution of el-
ement membership in fuzzy goal. Here peak-Γ membership function is se-
lected, whose formula is as equation (13).

μ(x) =

{
ek(x−a) x ≤ a, k > 0;
e−k(x−a) x > a, k > 0.

(13)

where x is the relative coordinates of the base. By firstly storing the rel-
ative coordinates of the end points of hairpins (i/n) in annotated training
sequences, their mean E and covariance V values are calculated, which are
then used to determine the k and a parameters as follows.

a = E, k = (
4
V

)1/3. (14)

To avoid membership being zero, the plus-one prior distribution is added to
the above membership functions of fuzzy goal subsets and the membership
functions are slightly adjusted.

On the other hand, when the structure profile of homologous RNA se-
quences is known, multiple fuzzy goal subsets can be defined according to
different hairpins. The membership function of each fuzzy goal subset can be
estimated respectively. Then the set of fuzzy goal is the union of these fuzzy
goal subsets, in which membership of each base is its biggest membership in
these fuzzy goal subsets.

μA B(x) = max(μA(x), μB(x)). (15)

2.2 Fuzzy Inference

Having root with deterministic and stochastic dynamic programming approaches,
fuzzy dynamic programming computes optimal value for each substage by the fill-
ing process and then attains the optimal fuzzy policy as well as secondary struc-
ture result by the tracing back process.

The optimal fuzzy policy is defined as

μ(U∗
0 , · · · ,U∗

K−1|X0) = max
U0,··· ,UK−1

(μC(U0) ◦ · · · ◦ μC(UK−1) ◦ μGK (XK)), (16)

where the states satisfy fuzzy state transition rules:

If Xt is Xk and Ut is Uk, then Xt+1 is Xk+1 (k = 0, 1, · · · , K − 1). (17)

where K is the total number of fuzzy stages. For fuzzy dynamic programming
with an implicit termination time, K can’t be specified in advance but varies
with paths. Thus Kth stage in the above equation denotes the termination time
while K − 1th is the stage before termination and so on. Meanwhile, μGK (xK)
is the membership of the state xk in the fuzzy goal and the fuzzy operator ◦ is
defined as algebraic product as the form x ◦ y = xy.

248 D. Song and Z. Deng

Filling Process. The filling process of FDP is iterative, which starts from the
subsequences with length 1 (i.e. the diagonal of the up-triangular matrix in Fig.
1), iterately expands the average length of the subsequences (to the up-right
direction of the matrix) until the whole sequence is computed and the terminat-
ing condition is matched (reaches initiate state S(1, l)). In each iteration, the
optimal policy of the subsequence decision process is computed.

μGK−v(XK−v) = max
UK−v

(μC(UK−v)◦ μGK−v+1(XK−v+1)) (v = 1, · · · ,K). (18)

More specifically, for now used FBJK structure and the definition of fuzzy
goal, the corresponding filling iteration formulations are symbolized in following
equations.

First, for state L(i, i):

μ(L(i, i)) = μC(U2) ◦ μSingle(B(i)); (19)

Second, for state S(i, i):

μ(S(i, i)) = μC(U4) ◦ μ(L(i, i)) ◦ μG(B(i)); (20)

Except for the above special formulas, other iterations are presented as follows:

μ(L(i, j))
i<j

= μC(U1) ◦ μ(L(i + 1, j − 1)) ◦ μPair(B(i), B(j));

μ(S(i, j))
i<j

= max

{
μC(U3) ◦ max

i<k<j
(μ(L(i, k)) ◦ μ(S(k + 1, j))

μC(U4) ◦ μ(L(i, j))
;

μ(F (i, j))
i≤j

= max

{
μC(U5) ◦ max

i<k<j
(μ(L(i, k)) ◦ μ(S(k + 1, j)))

μC(U6) ◦ μ(F (i + 1, j − 1)) ◦ μPair(B(i), B(j))
.

(21)

where B(i) refers to the ith base in the sequence.

Tracing Back Process. After the filling process has determined the mem-
bership of optimal policy, the tracing back process is used to retrieve the actual
optimal policy and its optimal path. It is actually a transformation process of the
current state starting from the initial state and using the fuzzy state transition
rules until attaining the termination state set. The optimal path is composed
of these states. This process is usually completed by employing the stack struc-
ture.

Meanwhile, the optimal secondary structure is attained simply as the base
pairs uniquely determine the secondary structure: bases i and j are paired in
the optimal secondary structure only if Pair(i, j) is on the optimal path.

3 Experimental Results

3.1 Dataset Preparation

In experiments, the tRNA datasets are used, in which 843 tRNA sequences
with annotated secondary structure are taken from the EMBL databank [16],

A FDP Approach to Predict RNA Secondary Structure 249

including various series such as virus, archaea, eubacteria, cyanelle, cytoplasm
and mitochondria. We construct three training sample datasets. The first one
is named MT100, in which 100 tRNA sequences are randomly selected from
the mitochondria data; while the second one is MT10CY10, where 10 tRNA
sequences are randomly selected from the cytoplasm data and 10 sequences from
the mitochondria data. The Rand tRNA dataset is composed of 569 randomly
selected tRNA from all the series.

3.2 Comparison with the BJK Grammar of the SCFG Approach

The paper of [13] gives a systematical analysis of nine different SCFG models,
which concludes that the prediction accuracy of Knudsen/Hein’s BJK grammar
is only slightly lower than its extension G6S grammar with a first order Markov
chain. While including stacking parameters makes the G6S grammar much more
complex, in synthetic sense, the BJK grammar can be treated as the best SCFG
grammar. Using the same training and testing samples datasets, we compare our
results with the BJK grammar model of the SCFG approach.

The parameter minimum length of hairpin (HLEN) of the two approaches
are both set to be 3 to keep them identical. Since the typical structure of tRNA
consists of four hairpins, when performing on the tRNA datasets, four fuzzy goal
subsets are used to describe them respectively and then merge into the set of
fuzzy goal in our approach.

We use sensitivity and specificity parameters to evaluate the RNA secondary
structure prediction accuracy, which are common measures of the accuracy of
prediction methods. Table 1 and 2 express the prediction accuracy of our Fuzzy
Dynamic Programming (FDP) approach compared with the BJK grammar of the
SCFG approach (BJK). The average sensitivity of these experiments is 81.48%
for the BJK grammar of the SCFG approach and 86.83% for our FDP approach,
while the average specificity is 78.62% and 82.68% respectively. Our method
outperforms the BJK grammar of the SCFG approach significantly.

Table 1. The FDP’s predicted Sensitivity(%) result compared with SCFG’s BJK gram-
mar with the same training (columns) and testing (rows) datasets. For instance, the
first number 82.57 refers to the prediction accuracy of the BJK grammar using the
MT10CY10 dataset to train parameters and the ARCHAE dataset to test.

MT10CY10 MT100 Rand tRNA
Dataset BJK FDP BJK FDP BJK FDP

ARCHAE 82.57 88.73 80.98 84.79 83.26 85.77
CY 81.06 90.58 81.68 86.30 83.01 88.69
CYANELCHLORO 83.39 93.03 83.34 88.79 85.71 90.18
EUBACT 90.30 92.30 87.56 91.16 91.19 93.06
VIRUS 80.45 84.16 78.40 84.36 80.45 84.36
MT 77.43 88.00 78.42 85.75 73.47 82.59
PARTIII 77.11 84.21 77.39 79.12 73.98 77.45

250 D. Song and Z. Deng

Table 2. FDP’s predicted Specificity(%) result compared with SCFG’s BJK grammar

MT10CY10 MT100 Rand tRNA
Dataset BJK FDP BJK FDP BJK FDP

ARCHAE 75.01 80.34 73.99 77.07 77.99 78.86
CY 76.65 85.22 77.23 81.34 82.65 85.12
CYANELCHLORO 79.08 87.48 78.44 82.65 83.75 85.31
EUBACT 84.21 86.67 81.72 84.95 86.84 87.46
VIRUS 78.20 78.05 73.98 79.00 79.80 80.87
MT 75.82 84.62 76.77 83.43 78.28 84.28
PARTIII 75.74 81.79 76.88 78.63 78.04 83.06

4 Discussion

The fuzzy structure model presented in this paper is similar to the BJK grammar
of the SCFG approach, with the fuzzy transition rules analogous to the BJK’s
production rules. But in our approach, we take the RNA secondary structure
prediction process as a fuzzy inference system and uses the fuzzy dynamic pro-
gramming approach to compute the optimal fuzzy policy. By taking advantage
of fuzzy theory, conservative information of RNA secondary structure can be
naturally and easily imported into the prediction process to get better perfor-
mance than the BJK grammar of the SCFG approach, which is the one with the
best synthetical performance among nine SCFG models in [13].

What must be emphasized is that, in our approach different definitions of
state spaces, fuzzy decisions and fuzzy state transition rules can be developed
according to realistic problems, not constrained to the description of this paper.

5 Conclusion and Future Work

This paper develops a novel Fuzzy Dynamic Programming Approach to im-
prove the accuracy of RNA secondary structure prediction. The structure and
its parameters, as well as the filling and tracing back process are described
systematically. The test of our approach performed on tRNA dataset provided
better outcomes than the reference BJK grammar of the SCFG approach. What
remains to be improved?

– The membership functions of fuzzy decisions and fuzzy goals are both cal-
culated by fuzzy statistical methods. This can be developed to use learning
algorithms like the forward-backward algorithm of the SCFG approach. The
prediction accuracy is expected to be improved, while the computational
complexity is supposed to rise.

– Besides the relative coordinates of 3’-end bases of hairpin, more typical sub-
structures such as the stem features can be taken as the conservative infor-
mation to improve the prediction.

– Our approach can be modified to include processing of pseudo-knots.

A FDP Approach to Predict RNA Secondary Structure 251

Acknowledgements

This work was supported in part by the National Science Foundation (Grant
No. 60321002) and the Teaching and Research Award Program for Outstanding
Young Teachers in Higher Education Institutions of MOE (TRAPOYT), China.

References

1. Nussinov, Pieczenik, Griggs, Kleitman: Algorithms for loop matchings. SIAM J.
on Applied Mathematics 35 (1978) 68–82

2. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research 9(1) (1981)
133–148

3. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Research 31(13) (2003) 3406–3415

4. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster,
P.: Fast folding and comparison of RNA secondary structures. Monatsh. Chem.
125 (1994) 167–188

5. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic
Acids Research

6. Ding, Y., Lawrence, C.E.: A Bayesian statistical algorithm for RNA secondary
structure prediction. Computers & Chemistry 23(3-4) (1999) 387–400

7. Mccaskill, J.S.: The equilibrium partition function and base pair binding proba-
bilities for RNA secondary structure. Biopolymers 29(6-7) (1990) 1105–1119

8. Steeg, E.W.: Neural network algorithms for RNA secondary structure prediction.
Technical report, University of Toronto Computer Science Dept., Toronto Canada
(1990)

9. Hu, Y.J.: Gprm: a genetic programming approach to finding common RNA sec-
ondary structure elements. Nucleic Acids Research 31(13) (2003) 3446–3449

10. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3) (1965) 338–353
11. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Management

Science 17 (1970) 141–164
12. Kacprzyk, J., Esogbue, A.O.: Fuzzy dynamic programming: main developments

and applications. Fuzzy Sets Syst. 81(1) (1996) 31–45
13. Dowell, R.D., Eddy, S.R.: Evaluation of several lightweight stochastic context-free

grammars for RNA secondary structure prediction. BMC Bioinformatics 5 (2004)
71–99

14. Knudsen, B., Hein, J.: Rna secondary structure prediction using stochastic context-
free grammars and evolutionary history. Bioinformatics 15(6) (1999) 446–454

15. Bilgiç, T., Türkşen, I.B.: Measurement of membership functions: theoretical and
empirical work. In Dubois, H.P.D., Zimmermann, H.J., eds.: International Hand-
book of Fuzzy Sets and Possibility Theory. Kluwer Academic, Norwell, MA (1999)

16. Steinberg, S., Misch, A., Sprinzl, M.: Compilation of tRNA sequences and se-
quences of tRNA genes. Nucleic Acids Research 21(13) (1993) 3011–3015

Landscape Analysis for Protein-Folding

Simulation in the H-P Model�

Kathleen Steinhöfel1, Alexandros Skaliotis1, and Andreas A. Albrecht2

1 King’s College London, Department of Computer Science
Strand, London WC2R 2LS, UK

2 University of Hertfordshire, School of Computer Science
Hatfield, Herts AL10 9AB, UK

Abstract. The hydrophobic-hydrophilic (H-P) model for protein fold-
ing was introduced by Dill et al. [7]. A problem instance consists of a
sequence of amino acids, each labeled as either hydrophobic (H) or hy-
drophilic (P). The sequence must be placed on a 2D or 3D grid without
overlapping, so that adjacent amino acids in the sequence remain adja-
cent in the grid. The goal is to minimize the energy, which in the simplest
variation corresponds to maximizing the number of adjacent hydrophobic
pairs. The protein folding problem in the H-P model is NP-hard in both
2D and 3D. Recently, Fu and Wang [10] proved an exp(O(n1−1/d) · lnn)
algorithm for d-dimensional protein folding simulation in the HP-model.
Our preliminary results on stochastic search applied to protein folding
utilize complete move sets proposed by Lesh et al. [15] and Blazewicz
et al. [4]. We obtain that after (m/δ)O(Γ) Markov chain transitions, the
probability to be in a minimum energy conformation is at least 1 − δ,
where m is the maximum neighbourhood size and Γ is the maximum
value of the minimum escape height from local minima of the underlying
energy landscape. We note that the time bound depends on the specific
instance. Based on [10] we conjecture Γ ≤ n1−1/d. We analyse Γ ≤ √

n
experimentally on selected benchmark problems [15,21] for the 2D case.

1 Introduction

A great variety of models has been developed for protein folding simulations,
with different levels of detail (for a concise discussion, cf. [20]). In the present
paper, we focus on minimal models [11], and we distinguish roughly between
lattice models [7] and off-lattice models [8,17]. For a discussion of energy func-
tions and justifications for the use of simplified (approximated) energy functions
we refer the reader to [20]. One of the most popular models of protein fold-
ing is the hydrophobic-hydrophilic (H-P) model [7]. In the H-P model, proteins
are modelled as chains whose vertices are marked either H (hydrophobic) or P
(hydrophilic); the resulting chain is embedded into some lattice. H nodes are
considered to attract each other while P nodes are neutral. An optimal embed-
ding is one that maximizes the number of H-H contacts. The rationale for this
� Research partially supported by EPSRC Grant No. EP/D062012/1.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 252–261, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Landscape Analysis for Protein-Folding Simulation in the H-P Model 253

objective is that hydrophobic interactions contribute a significant portion of the
total energy function. Unlike more sophisticated models of protein folding, the
main goal of the H-P model is to explore broad qualitative questions about pro-
tein folding such as whether the dominant interactions are local or global with
respect to the chain [11].

Lattice models of protein folding have provided valuable insights into the
general complexity of protein structure prediction problems: Protein structure
prediction has been shown to be NP-hard for a variety of lattice models [3,11,16].
The intractability results are complemented by performance guaranteed approx-
imation algorithms that run in linear time [11,13]. Since protein structure pre-
diction is NP-hard, (local) search-based algorithms are a natural choice to tackle
the problem, especially in lattice models; cf. literature in [11]. Lesh et al. [15] and
Blazewicz et al. [4] proposed complete neighbourhood move sets for local search
in 2D and 3D grids, respectively, and performed computational experiments on
benchmark problems for protein folding in the H-P model. Recently, Fu and
Wang [10] proved an exp(O(n1−1/d) · lnn) algorithm for d-dimensional protein
folding simulation in the HP-model. It is interesting to note that this time bound
almost exactly mirrors the folding time approximation exp(λ · n2/3 ± χ · n1/2/2)
by Finkelstein and Badretdinov [9]1.

The present paper reports our preliminary results on stochastic search applied
to protein folding in the H-P model. We utilize the complete move sets proposed
in [15] and [4]. We obtain that after (m/δ)O(Γ) Markov chain transitions, the
probability to be in a minimum energy conformation is at least 1 − δ, where
m is the maximum neighbourhood size of individual conformations, and Γ is
the maximum value of the minimum escape height from local minima of the
underlying energy landscape. Thus, the run-time estimation is problem-specific.
To be competitive with the Fu/Wang run-time bound, we need to show Γ ≤
n1−1/d. Future research will focus on proven upper bounds of Γ in the context
of complete move sets for the H-P model. In the present paper, we analyse the
conjecture Γ ≤

√
n experimentally on selected benchmark problems (taken from

[15,21]) for the 2D case.

2 Preliminaries

Our stochastic local search procedure for protein folding is based on simulated
annealing [6,14], where the underlying Markov chain is of inhomogeneous type
[5,12]. For simplicity of presentation, we focus on the 2D rectangular grid H-P
model only.

Anfinsen’s thermodynamic hypothesis [2] motivates the attempt to predict
protein folding by solving certain optimization problems, but there are two main
difficulties with this approach: The precise definition of the energy function that
has to be minimised, and the extremely difficult optimization problems arising
from the energy functions commonly used in folding simulations [11,17]. In the

1 The authors are grateful to one anonymous referee for drawing our attention to [9].

254 K. Steinhöfel, A. Skaliotis, and A.A. Albrecht

2D rectangular grid H-P model, one can define the minimization problem as
follows:

min
α

E(S, α) for E(S, α) := ξ ·HHc(S, α), (1)

where where S is a sequence of amino acids containing n elements; Si = 1, if
amino acid on the ith position in the sequence is hydrophobic; Si = 0, if amino
acid on the ith position is polar; α is a vector of (n − 2) grid angles defined
by consecutive triples of amino acids in the sequence; HHc is a function that
counts the number of neighbours between amino acids that are not neighbours
in the sequence, but they are neighbours on the grid (they are topological neigh-
bours); finally, ξ < 0 is a constant lower than zero that defines an influence ratio
of hydrophobic contacts on the value of conformational free energy. The dis-
tances between neighbouring grid nodes is assumed to be equal to 1. We identify
sequences α with conformations of the protein sequence S, and a valid confor-
mation α of the chain S lies along a non-self-intersecting path of the rectangular
grid such that adjacent vertices of the chain S occupy adjacent locations. Thus,
we define the set of conformations (for each S specifically) by

FS :=
{

α is a valid conformation for S
}
. (2)

Since F := FS is defined for a specific S, we denote the objective function by

Z(α) := ξ ·HHc(S, α). (3)

The neighbourhood relation of our stochastic local search procedure is de-
termined by the set of pull moves introduced in [15] for 2D protein folding
simulations in the H-P model (and, basically, extended to the 3D case in [4]).
For details of the definition of the set of pull moves we refer the reader to [15].

Theorem 1. [15] The set of pull moves is local, reversible, and complete within
F , i.e., any β ∈ F can be reached from any α ∈ F by executing pull moves only.

The set of neighbours of α that can be reached by a single pull move is denoted
by Nα, where additionally α is included since the search process can remain in
the same configuration. Furthermore, we set

Nα := |Nα |; (4)
Fmin :=

{
α : α ∈ F and Z(α) = min

α′
E(S, α′)

}
. (5)

In simulated annealing-based search, the transitions between neighbouring ele-
ments are depending on the objective function Z. Given a pair of protein con-
formations [α, α′], we denote by G[α, α′] the probability of generating α′ from
α, and by A[α, α′] we denote the probability of accepting α′ once it has been
generated from α. As in most applications of simulated annealing, we take a
uniform generation probability:

G[α, α′] :=

{
1

Nα
, if α′ ∈ Nα;

0, otherwise.
(6)

Landscape Analysis for Protein-Folding Simulation in the H-P Model 255

The acceptance probabilities A[α, α′] are derived from the underlying analogy
to thermodynamic systems:

A[α, α′] :=

{
1, if Z(α′) −Z(α) ≤ 0;

e−
Z(α′)−Z(α)

t , otherwise,
(7)

where t is a control parameter having the interpretation of a temperature in
annealing processes. The probability of performing the transition between α and
α′ is defined by

Pr{α→ α′} =

⎧⎨⎩ G[α, α′] · A[α, α′], if α′ �= α;

1 −
∑

α′ �= α

G[α, α′] · A[α, α′], otherwise. (8)

By definition, the probability Pr{α → α′} depends on the control parameter t.
Let aα(k) denote the probability of being in conformation α after k transition
steps. The probability aα(k) is calculated in accordance with

aα(k) :=
∑
β∈F

aβ(k − 1) ·Pr{β → α}. (9)

The recursive application of (9) defines a Markov chain of probabilities aα(k),
where α ∈ F and k = 1, 2, If the parameter t = t(k) is a constant t, the
chain is said to be a homogeneous Markov chain; otherwise, if t(k) is lowered at
any step, the sequence of probability vectors a(k) is an inhomogeneous Markov
chain.

In the present paper we are focusing on a special type of inhomogeneous
Markov chains where the value t(k) changes in accordance with

t(k) =
Γ

ln(k + 2)
, k = 0, 1, (10)

The choice of t(k) is motivated by Hajek’s Theorem on logarithmic cooling sched-
ules for inhomogeneous Markov chains [12]. To explain Hajek’s result, we first
need to introduce some parameters characterising local minima of the objective
function:

Definition 1. A conformation α′ ∈ F is said to be reachable at height h from
α ∈F , if ∃α0, α1, ..., αr ∈ F with α0 = α ∧ αr = α′ such that G[αu, αu+1] >
0, u = 0, 1, ... , (r − 1), and Z(αu) ≤ h for all u = 0, 1, ... , r.

We use the notation H(α⇒α′) ≤ h for this property. The conformation α is a
local minimum, if α ∈ F\Fmin and Z(α′) ≥ Z(α) for all α′ ∈ Nα\{α}.

Definition 2. Let λmin denote a local minimum, then D(λmin) denotes the
smallest h such that there exists λ′ ∈ F with Z(λ′) < Z(λmin) that is reach-
able at height Z(λmin) + h.

The following convergence property has been proved by B. Hajek:

256 K. Steinhöfel, A. Skaliotis, and A.A. Albrecht

Theorem 2. [12] For t(k) from (10), the asymptotic convergence
∑

α∈Fmin
aα(k)

−→
k→∞

1 of the algorithm defined by (3), ..., (9) is guaranteed if and only if

1. ∀α, α′∈F ∃α0, α1, ... , αr∈F such that α0 = α ∧ αr = α′

and G[αu, αu+1] > 0 for u = 0, 1, ... , (r − 1);
2. ∀h : H(α⇒α′) ≤ h ⇐⇒ H(α′⇒α) ≤ h;
3. Γ ≥ max

λmin
D(λmin).

From Theorem 1 and the definition of Nα we immediately conclude that the
conditions (i) and (ii) are valid for F . Thus, together with Theorem 2 we obtain:

Corollary 1. If Γ ≥ maxλmin D(λmin), the algorithm defined by (3), ..., (10)
and the pull move set from [15] tends to minimum energy conformations in the
H-P model.

3 Run-Time Estimates of Simulations

In this section, we outline a run-time estimation for finding optimum conforma-
tions with a certain confidence δ′ = 1 − δ > 0. The run-time estimation is an
extension of the convergence analysis from [1] to a more complicated objective
function, and it relates the run-time to the landscape parameter Γ (cf. (10)), to
the confidence parameter δ′ = 1 − δ, and to the maximum size m of individual
neighbourhood sets.

For any α ∈ F we introduce the following parameters:

s(α) := |{α′ : α′ ∈ Nα ∧ Z(α′) > Z(α)}|, (11)
r(α) := |{α′ : α′ ∈ Nα ∧ α′ �= α ∧ Z(α′) ≤ Z(α)}| . (12)

Thus, from the definition of Nα and (4) we have

s(α) + r(α) = Nα − 1. (13)

We observe that for Z(α′) > Z(α) the acceptance probability (7) can be rewrit-
ten as

e−(Z(α′)−Z(α))/t(k) =
1(

k + 2
)(Z(α′)−Z(α))/Γ

, k ≥ 0. (14)

To simplify notation, we use γ := γ(α′, α) := (Z(α′) − Z(α))/Γ , in most cases
not indicating the dependence on (α′, α).

In (9), we separate the probabilities according to whether or not α′ equals α,
and the probability to remain in α is substituted by the defining equation from
(8). Thus, we obtain:

aα(k)=
∑

α′ ∈ Nα

aα′(k − 1) ·Pr{α′ → α}

=aα(k − 1) ·
(
1−

∑
α′ �= α

Pr{α→ α′}
)

+
∑

α′ �= α

aα′ (k − 1) ·Pr{α′ → α}.

Landscape Analysis for Protein-Folding Simulation in the H-P Model 257

The value of aα(k) is now expressed by using structural parameters as defined
in (11) and (12):

Lemma 1. The value of aα(k) can be calculated from probabilities of the previ-
ous step by

aα(k) =
(

s(α) + 1
Nα

− 1
Nα

·
s(α)∑
i=1

1
(k + 1)γ

)
· aα(k − 1) +

s(α)∑
i=1

aαi(k − 1)
Nαi

+

+
r(α)∑
j=1

aαj (k − 1)
Nαj

· 1
(k + 1)γ . (15)

The backwards expansion from Lemma 1 will be used as the main relation
reducing aα(k) to probabilities from previous steps. The elements of the con-
formation space are distinguished by their minimum distance to Fmin: Given
α ∈ F , we consider a shortest path of length dist(α) with respect to neighbour-
hood transitions from α to Fmin. We introduce a partition of F in accordance
with dist(α):

α ∈Mi ⇐⇒ dist(α) = i ≥ 0, and Mdm =
dm⋃
i=0

Mi, (16)

where M0 :=Fmin and dm is the maximum distance. From the proof of Theorem 1
in [15] we conclude

dm ≤ nO(1). (17)

Since we want to analyze the convergence to elements from M0 = Fmin, we have
to show that the value ∑

α�∈M0

aα(k) (18)

becomes small as k increases. We assume k ≥ dm and we are going backwards
from step k: At the same backwards transition from k to (k−1), the neighbours
of α are generating terms containing aα(k − 1) as a factor in the same way as
aα(k) generates terms with factors aαi(k − 1) and aαj (k − 1), see Lemma 1.
If we now consider the entire sum

∑
α�∈M0

aα(k), the terms corresponding to a
particular aα(k−1) can be collected together to form a single expression. Firstly,
we consider α ∈ Mi, i ≥ 2. In this case, α does not have neighbours from M0,
i.e., the expansion from Lemma 1 appears for all neighbours of α in the reduction
of
∑

α�∈M0
aα(k) to step (k − 1). Therefore, in the expansion of

∑
α�∈M0

aα(k),
the following arithmetic term is generated when the particular α is from M1:(

1 − r(α)
Nα

)
· aα(k − 1). (19)

We introduce the following abbreviations:

ϕ(α, v) :=
1

Nα
·
s(α)∑
i=1

1
(k + 2− v)γi

and Dα(k−v) :=
s(α) + 1

Nα
−ϕ(α, v). (20)

258 K. Steinhöfel, A. Skaliotis, and A.A. Albrecht

Now, the backwards expansion can be summarised to

Lemma 2. A single step of the expansion of
∑

α�∈M0
aα(k) results in∑

α �∈ M0

aα(k)=
∑

α �∈ M0

aα(k−1)−
∑

α ∈ M1

r(α)
Nα

·aα(k−1)+
∑

α′ ∈ M0

ϕ(α′, 1)·aα′ (k−1). (21)

The diminishing factor (1− r(α)/Nα) is generated by definition for all elements
of M1. At subsequent reduction steps, the factor is “transmitted” successively to
all probabilities from higher distance levels Mi because any element of Mi has
at least one neighbour from Mi−1. We denote∑

α �∈ M0

aα(k) =
∑

α �∈ M0

μ(α, v) · aα(k − v) +
∑

α′ ∈ M0

μ(α′, v) · aα′(k − v), (22)

i.e., the coefficients μ(α̃, v) are the factors at probabilities after v steps of a back-
wards expansion of

∑
α�∈M0

aα(k). Starting from step (k − 1), the probabilities
aα′(k − v), α′ ∈ M0, from (22) are expanded in the same way as the proba-
bilities for all other α �∈ M0. Taking into account (20), we obtain the following
parameterized representation for μ(α̃, v):

Lemma 3. The following recurrent relation is valid for the coefficients μ(α̃, v):

μ(α̃, v)=μ(α̃, v−1)·Dα̃(k−v)+
∑

α′′ < α̃

μ(α′′, v−1)
Nα̃

+
∑

α′ > α̃

μ(α′, v−1)
Nα̃

· 1
(k+2−v)γ

. (23)

We take advantage of the fact that for conformations α different from local and
global minima the factor Dα(k − v), which is associated with the probability to
remain in α, is smaller than (1 − 1/(m + 1)) for m := maxα Nα, i.e. there is
an upper bound independent of (k − v); see (20). Let MIN denote the set of all
global and local minima. We set M̂ :=

{
α : r(α) ≥ 1

}
= F\MIN and consider

aα(k) defined by (8) and (9) when all probabilities on the right hand side are
recursively substituted in the same way, where we break up the paths of the
expansion that lead from some α to α′ with Z(α) > Z(α′). Such transitions
generate a factor (k + 2− u)−γ , which is then used as the crucial type of factors
in the upper bound of aα(k). By analysing this type of expansions, we obtain:

Lemma 4. If k > 2 · (m + 1)2 · ln (k + 2)maxγ for the maximum size m of
neighbourhoods, then∑

α∈M

aα(k) < O
((m + 1)3

(k − 2 · (m + 1)2 · ln (k + 2)maxγ)min γ

)
. (24)

By Mlm ⊂ MIN we denote the set of all local minima, and A stands for the
RHS of (24). If α ∈ Mlm, we represent μ(α, v) by μ(α, v) = 1 − ν(α, v) and by
straightforward calculations we obtain∑

α�∈M0

aα(k)−
∑

α�∈M0

aα(k′) < A+
∑

α∈Mlm

ν(α, v′)·aα(k).

Thus, it remains to analyse ν(α, v′), v′ ≥ dm + v, for local minima:

Landscape Analysis for Protein-Folding Simulation in the H-P Model 259

Lemma 5. If α ∈Mlm, then

ν(α, v′) < O
((m + 1)

(k + 2− v′)min γ

)
. (25)

From (25) and Lemma 5 we obtain the main result:

Theorem 3. If Γ ≥ max
λmin

D(λmin) for F from (2) and 0<δ<1, then

k ≥
((m + 1)3

δ

)O(Γ)

implies
∑

α′∈Fmin

aα′ (k) ≥ 1 − δ. (26)

4 Landscape Analysis on Selected Benchmarks

As mentioned in Section 1 already, the run-time estimation (26) from Theorem 3
is problem-specific, i.e. depends on the parameter Γ of the landscape induced
by an individual protein sequence. For a problem-independent upper bound we
conjecture Γ ≤ n1−1/d, which complies with the result from [10]. However, for
individual protein sequences one can proceed as follows: Given a sequence α, the
parameter Γ is estimated in a pre-processing step (landscape analysis), where
the maximum increase of the objective function is monitored in-between two
successive improvements of the best value obtained so far. This approach usually
overestimates Γ significantly. Therefore, we are searching for a suitable constant
c such that Γ ′ = Gmonit/c comes closer to Γ , where Gmonit is the maximum
of the monitored increases of the objective function in-between two successive
total improvements of the objective function. This estimation Γ ′ is then taken
(together with the length of α and a choice of δ for the confidence 1 − δ) as
the setting for the (slightly simplified) run-time estimation according to (26).
In our computational experiments on 2D benchmark problems we indeed obtain
optimum solutions for smaller values of Γ than

√
n.

The stochastic local search procedure as described in Section 2 was imple-
mented and we analysed the following 2D benchmark problems (cf. [15,21]):

Table 1. Selected 2D benchmark problems from [15,21]

name/n structure Zmin

S36 3P2H2P2H5P7H2P2H4P2H2PH2P -14
S60 2P3HP8H3P10HPH3P12H4P6HP2HPHP -35
S64 12HPHPH2P2H2P2H2PH2P2H2P2H2PH2P2H2P2H

2PHPHP12H -42
S85 4H4P12H6P12H3P12H3P12H3PH2P2H2P2H2PHPH -53
S100 6PHP2H5P3HP5HP2H4P2H2P2HP5HP10HP2HP7H

11P7H2PHP3H6PHP2H -48

260 K. Steinhöfel, A. Skaliotis, and A.A. Albrecht

Table 2. Results for selected 2D benchmarks; 1 − δ = 0.51

name/n
√

n Gmonit Γ ′ (n/δ)Γ ′
Tmax

S36 6.00 9.25 3.00 ≈ 4.0 × 105 29, 341
S60 ≈ 7.74 14.00 3.87 ≈ 1.2 × 108 30, 319
S64 8.00 18.00 4.00 ≈ 2.9 × 108 259, 223
S85 ≈ 9.20 21.75 4.60 ≈ 2.0 × 1010 13, 740, 964
S100 10.00 21.50 5.00 ≈ 3.5 × 1011 57, 195, 268

Unfortunately, information about the exact number of ground states is not pro-
vided; the ground states are equally treated. In [15], three states are reported
for S85, two states for S100.

Following the experimental part of [1], we use (m/δ)Γ ′
as a simplified version

of (26), where Γ ′ is ≈
√

n/2. We compare Γ ′ to Gmonit/c, i.e. apart from trying
to approximate the real Γ by Γ ′, we also try to relate Γ ′ to Gmonit.

In Table 2 we report results where Zmin was achieved for all five benchmark
problems from Table 1. By Tmax we denote the average number of transitions
necessary to achieve Zmin calculated from four successive runs for the same
benchmark problem. The same applies to Gmonit, which is the average from
the four runs executed for each of the five benchmark problems. Although by
definition Γ has to be an integer value, we allowed rational values for Γ ′. The
simplified version of (26) was calculated for m = n and δ = 0.49, i.e. for a
confidence of 51%. As already mentioned, the value of Γ ′ was chosen ≈

√
n/2,

which was used in (10) for the implementation.
As can be seen, the simplified version of (26) still overestimates the number

of transitions sufficient to achieve Zmin for the selected benchmark problems,
which is at least partly due to the setting m = n. To incorporate improved
upper bounds of m will be subject of future research. Based on the data from
Table 2, the constant c in Γ ′ = Gmonit/c ranges from 3.08 to 4.73. Overall, the
results encourage us to attempt a formal proof of the conjecture Γ ≤

√
n.

5 Concluding Remarks

We analyzed the run-time of protein folding simulations in the H-P model, if
the underlying algorithm is based on the pull move set and logarithmic simu-
lated annealing. We obtained that the probability to be in a minimum energy
conformation is at least 1 − δ after (m/δ)κ·Γ Markov chain transitions, where
m < sequence length n, κ is a small constant, and Γ is a crucial parameter of
the landscape induced by the energy measure, the pull move set, and the indi-
vidual sequence that has to be folded. Future research will be directed towards
tight upper bounds of Γ in terms of the sequence length n, improved upper
bounds of the maximum neighbourhood size m, on computational experiments
on benchmark problems for the 3D case, and on landscape properties related to
Levinthal’s paradox [18], i.e. if there are “shallow” sub-landscapes with small Γ
that imply fast folding.

Landscape Analysis for Protein-Folding Simulation in the H-P Model 261

References

1. Albrecht, A.A.: A stopping criterion for logarithmic simulated annealing. Comput-
ing (2006); in press.

2. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181
(1973) 223–230.

3. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete. J. Comput. Biol. 5 (1998) 27–40.

4. Blazewicz, J., Lukasiak, P., Milostan, M.: Application of tabu search strategy for
finding low energy structure of protein. Artif. Intell. Med. 35 (2005) 135–145.

5. Catoni, O.: Rough large deviation estimates for simulated annealing: applications
to exponential schedules. Ann. Probab. 20 (1992) 1109–1146.

6. Černy, V.: A thermodynamical approach to the travelling salesman problem: an
efficient simulation algorithm. J. Optim. Theory Appl. 45 (1985) 41–51.

7. Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D., Chan,
H.S.: Principles of protein folding – A perspective from simple exact models. Pro-
tein Sci. 4 (1995) 561–602.

8. Eastwood, M.P., Hardin, C., Luthey-Schulten, Z., Wolynes, P.G.: Evaluating pro-
tein structure-prediction schemes using energy landscape theory. IBM J. Res. Dev.
45 (2001) 475–497.

9. Finkelstein, A.V., Badretdinov A.Y.: Rate of protein folding near the point of ther-
modynamic equilibrium between the coil and the most stable chain fold. Folding
& Design 2 (1997) 115–121.

10. Fu, B., Wang, W.: A 2O(n1−1/d·log n) time algorithm for d-dimensional protein fold-
ing in the HP-model. Proc. ICALP’04, pp. 630–644, LNCS 3142, 2004.

11. Greenberg, H.J., Hart, W.E., Lancia, G.: Opportunities for combinatorial opti-
mization in computational biology. INFORMS J. Comput. 16 (2004) 211–231.

12. Hajek, B.: Cooling schedules for optimal annealing. Mathem. Oper. Res. 13 (1988)
311–329.

13. Heun, V.: Approximate protein folding in the HP side chain model on extended
cubic lattices. Discrete Appl. Math. 127 (2003) 163–177.

14. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220 (1983) 671–680.

15. Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for
simplified protein folding. Proc. RECOMB’03, pp. 188–195, 2003.

16. Nayak, A., Sinclair, A., Zwick, U.: Spatial codes and the hardness of string folding
problems. J. Comput. Biol. 6 (1999) 13–36.

17. Neumaier, A.: Molecular modeling of proteins and mathematical prediction of pro-
tein structure. SIAM Rev. 39 (1997) 407–460.

18. Ngo, J.M., Marks, J., Karplus, M.: Computational complexity, protein structure
prediction, and the Levinthal paradox. In: K. Merz Jr., S. LeGrand (eds.), The Pro-
tein Folding Problem and Tertiary Structure Prediction, pp. 433–506, Birkhäuser,
Boston, 1994.

19. Pardalos, P.M., Liu, X., Xue, G.: Protein conformation of a lattice model using
tabu search. J. Global Optim˙11 (1997) 55–68.

20. Straub, J.E.: Protein folding and optimization algorithms. The Encyclopedia of
Computational Chemistry, vol. 3, pp. 2184–2191, Wiley & Sons, 1998.

21. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. J. Mol.
Biol. 231 (1993) 75–81.

Rapid ab initio RNA Folding Including

Pseudoknots Via Graph Tree Decomposition

Jizhen Zhao1, Russell L. Malmberg2, and Liming Cai1

1 Department of Computer Science, University of Georgia, Athens, GA 30602, USA
{jizhen, cai}@cs.uga.edu �

2 Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
russell@plantbio.uga.edu

Abstract. The prediction of RNA secondary structure including
pseudoknots remains a challenge due to the intractable computation of
the sequence conformation from intriguing nucleotide interactions. Op-
timal algorithms often assume a restricted class for the predicted RNA
structures and yet still require a high-degree polynomial time complexity,
which is too expensive to use. Heuristic methods may yield time-efficient
algorithms but they do not guarantee optimality of the predicted struc-
ture. This paper introduces a new and efficient algorithm for the predic-
tion of RNA structure with pseudoknots for which the structure is not
restricted. Novel prediction techniques are developed based on graph
tree decomposition. In particular, stem overlapping relationships are de-
fined with a graph, in which a specialized maximum independent set
(IS) corresponds to the desired optimal structure. Such a graph is tree
decomposable; dynamic programming over a tree decomposition of the
graph leads to an efficient algorithm. The new algorithm is evaluated
on a large number of RNA sequence sets taken from diverse resources.
It demonstrates overall sensitivity and specificity that outperforms or is
comparable with those of previous optimal and heuristic algorithms yet
it requires significantly less time than other optimal algorithms.

1 Introduction

The secondary structure of an RNA molecule is formed due to short or long
distance pairings between nucleotides in the sequence. Base pair regions either
single, nested or parallel are called stem-loops; base pair regions crossing each
other are called pseudoknots [23]. Pseudoknots are important structures in RNA
molecules and often play important functional roles [12] such as catalysis, RNA
splicing, transcription regulation. Knowing the secondary structures of RNA
molecules is critical for determining their three dimensional structures and un-
derstanding their functions. Automated prediction of RNA secondary structure
is thus in demand since it is expensive and time consuming to experimentally
determine the structure.

� To whom correspondence should be addressed.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 262–273, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Rapid ab initio RNA Folding Including Pseudoknots 263

It is computationally challenging to predict RNA secondary structure includ-
ing pseudoknots. In particular, the problem of predicting RNA pseudoknots
with the minimum free energy is provably NP-hard [13]. Practical approaches to
cope with this computational challenge are either to restrict the class of pseudo-
knots under consideration or to employ heuristics in the algorithms. Optimal
algorithms for restricted pseudoknot classes are usually thermodynamics-based,
extended from Zuker’s algorithm for the prediction of pseudoknot-free struc-
tures [25]. In such algorithms, the predicted optimal structure of a single RNA
sequence is the one with the global minimum free energy based on a set of exper-
imentally determined parameters. Among these algorithms, PKNOTS [17] can
handle the widest classes of pseudoknots. However, its time complexity O(n6)
makes it infeasible to fold RNA sequences of a moderate length. The computa-
tion efficiency may be improved at the cost of further restricting the structure
of pseudoknots [16], but still with a time complexity O(n5) or O(n4). Most such
algorithms produce only the optimal solution, while suboptimal ones that may
reveal the true structure are often ignored.

On the other hand, computationally efficient heuristic methods have also been
explored to allow unrestricted pseudoknot structures. Iterated loop matching
(ILM) [19] is one such method. It finds the most stable stem, adds it to the
candidate secondary structure and then masks off the bases forming the stem and
iterates on the left sequence segments until no other stable stem can be found.
One structure is reported at the end. Another algorithm, HotKnots [16], does
the prediction in a slightly different way. It keeps multiple candidate structures
rather than only one and builds each of them in a similar but more elaborate way.
These methods can usually be fast, yet they often do not provide an optimality
guarantee for the predicted structure or a quality measure on the predicted
structure with respect to the optimal structure. Other heuristic methods based
on genetic algorithms and Monte Carlo simulation usually do not address the
optimality issue either [1,5].

In this paper, we introduce a novel approach for the optimal prediction of RNA
pseudoknots for which the structure is not restricted. Our method is based on
a simplified thermodynamic model without accounting for loop energies [15,19].
In this method, stable stems are selected from an RNA sequence as vertices of
a graph; vertices are connected with edges if corresponding stems conflict (i.e.,
overlap) in their positions in the sequence. The optimal structure of an RNA
sequence corresponds to a collection of non-conflicting stable stems, which can
be found by seeking the maximum weighted independent set (WIS) from the
graph. We observe that stable stems can be so selected that the resulting graph
is of a moderately small tree width t. Based on a tree decomposition of the graph,
a dynamic programming algorithm for WIS of the worst-case time complexity
O(1.44tn) is obtained, where n is the number of vertices in the graph, at most
quadratic in the length of the RNA sequence. This is an efficient prediction
algorithm parameterized on the tree width t, which is usually small.

We implemented our algorithm TdFOLD and evaluated its performance on
various RNA sequence sets from different sources. The test results showed high

264 J. Zhao, R.L. Malmberg, and L. Cai

efficiency and high accuracy for our algorithm. TdFOLD was tested against
PKNOTS, ILM and HotKnots on a set of 50 tRNA’s, a set of 50 small RNA
sequences containing pseudoknots with length ranging from 23 to 113, and a set
of 11 large RNA’s with length range from 210 to 412. The results showed that
overall, in terms of the sensitivity and specificity of the prediction, TdFOLD
outperforms the optimal algorithm PKNOTS and the heuristic algorithms ILM
and HotKnots. In time efficiency, it outperforms PKNOTS and HotKnots, and
is comparable with ILM. Our algorithm will also output suboptimal structures
without spending much more time than reporting the optimal structure.

Graph theoretic methods have previously been explored for RNA structure
prediction [23]. Our method is different from the previous ones in two respects.
Our graphs constructed from the RNA sequence contain vertices describing stems
instead of nucleotides; making the stem to be the smallest structural unit can
greatly simplify the complexity of the problem. More importantly, our graph al-
gorithm takes advantage of the tree decomposition technique on the formulated
graphs. In fact, it has been demonstrated that the RNA secondary structure can
be profiled with a conformational graph of small tree width [21]. The underlying
graph constructed for the ab initio structure prediction is essentially an augmen-
tation of the conformational graph in which additional vertices and edges are
added only for the overlapping stems, thus inheriting the tree decomposability
which makes the algorithm efficient.

2 Methods and Algorithm

Given an RNA sequence, our algorithm first builds a pool of stable stems, then
finds a number of secondary structures with (near) minimum total stem energies
by a tree decomposition based procedure for a graph formed by the stable stems.
These predicted secondary structures are then reordered by counting the stem
and loop energies together.

2.1 Problem Formulation

A (canonical) base pair is either a Watson-Crick pair (A-U or C-G) or for wobble
pair G-U . A stem is a set of stacked nucleotide base pairs on an RNA sequence
s. In general a stem S can be associated with four positions (il, jl, ir, jr), where
il < jl < ir < jr, on the sequence s such that (a) (s[il], s[jr]) and (s[jl], s[ir]) are
two canonical base pairs; and (b) for any two base pairs (s[x], s[y]), (s[z], s[w])
in the stem S, either il ≤ x < z ≤ jl and ir ≤ w < y ≤ jr, or il ≤ z < x ≤ jl

and ir ≤ y < w ≤ jr. Region s[il..jl] is the left region of the stem and s[ir..jr]
is the right region of the stem. Stem S is stable if the formation of its base pairs
allows the thermodynamic energy Δ(S) of the stem to be below a predefined
threshold parameter E < 0. Figure 1(a) shows all the stable stems in Ec Pk4

with E = −5 kcal/mol, the fourth pseudoknot in E.coli tmRNA [24], and their
corresponding free energy values.

A stem graph G = (V, E) can be defined for the RNA sequence s, where each
vertex in V uniquely represents a stable stem on s, and E contains an edge

Rapid ab initio RNA Folding Including Pseudoknots 265

-5.134..3627..2910

-5.330..3315..189

-5.435..3723..258

-5.423..2512..147

-5.519..2211..146

-5.527..3010..135

-6.222..259..124

-6.834..401..73

-7.847..525..102

-12.427..361..101

EnRLID

6

5
4

2

7

1

3

8

10

9

4,5,8,7

4,5,7,6

1,3,5,8,10

1,2,3,5,8

1,2,5,8,4 1,5,9

(a) (b) (c)

Fig. 1. (a) Ten stable stems in Ec Pk4, the fourth pseudoknot in E.coli tmRNA mole-
cule, including their left and right regions, and thermodynamic energies; (b) stem graph
for Ec Pk4; and (c) a tree decomposition of the stem graph with tree width 4

between two vertices if and only if the corresponding two stems (a, b, c, d) and
(x, y, z, w) conflict in their positions, i.e., one or both of the regions s[a..b] and
s[c..d] overlap with at least one of the regions s[x..y] and s[z..w]. Figure 1(b)
shows the stem graph for Ec Pk4 constructed according to the stable stems
given in Figure 1(a). The stem graph is a weighted graph, with a weight on
every vertex. Usually, the weight of a vertex can simply be the absolute value of
the thermodynamic energy Δ(S) of the stem S corresponding to the vertex. The
weight may also be adjusted by scaling it (non-)linearly according to the length
of the corresponding stem or the distance between the left and right regions
of the stem. The problem of predicting the optimal structure of the RNA then
corresponds to finding a collection of non-conflicting stems from its stem graph
which achieves the maximum total weight. This is exactly the same as the graph
theoretic problem: finding the maximum WIS in the stem graph. Note the weight
for an IS representing a secondary structure is based on the total energies of the
stems only (similar models were previously adopted by both primitive method
[15] and more elaborate one [19]).

2.2 Identifying Stable Stems

For our purpose, stable stems are defined according to a set of parameters. In
particular, a stem contains at least P base pairs; the loop length in between the
left and right region of the stem is at least L; the thermodynamic energy is at
most E. Bulges within a stem are allowed, for which the stem essentially becomes
a set of substems separated by the bulges. In addition, parameter T limits the
minimum substem length, and parameter B limits the maximum bulge length.
The thermodynamic energy Δ(S) of stem S is calculated by taking into account
both the stacking energies and the destabilizing energies caused by bulges. A
procedure similar to the one used in [11] is employed to identify all the stable
stems. The stable stem pool can be extended by introducing maximal substems
that can resolve the conflicts and meet the requirements defined by the above
parameters for each pair of overlapped stems in the pool.

266 J. Zhao, R.L. Malmberg, and L. Cai

2.3 Tree Decomposition Based Algorithm

Definition [18] A tree decomposition of graph G = (V, E) is a pair (T, X) if it
satisfies:

1. T = (I, F) is a tree with node set I and edge set F ,
2. X ={Xi : i ∈ I, Xi ⊆ V },

⋃
i Xi = V and ∀u ∈ V , ∃i ∈ I such that u ∈ Xi,

3. ∀(u, v) ∈ E, ∃i ∈ I such that u, v ∈ Xi,
4. ∀i, j, k ∈ I, if k is on the path that connects i and j in tree T , Xi∩Xj ⊆ Xk

The width of a tree decomposition (T, X) is maxi∈I |Xi| − 1. The tree width of
the graph G is the minimum tree width over all possible tree decomposition of
G. If T is restricted to be a path, we refer (T, X) as a path decomposition and the
best width over all of the path decompositions as the path width of G. The tree
decomposition is rooted in the deep graph minor theorems by Robertson and
Seymour [18]. It provides a topological view on a graph and the tree width mea-
sures how much the graph is ”tree-like”. Figure 1(c) shows a tree decomposition
for the stem graph given in Figure 1(b).

Many computationally intractable graph problems can be easily solved on
graphs of small tree width. In particular, a large number of such graph problems,
while intractable on general graphs, can be solved in linear time, given a tree
decomposition of tree width ≤ t, for a fixed t. Maximum WIS is one such problem
[3]; it has time complexity O(2tn). For the RNA stem graphs, we observe that
vertices contained in every node of a tree decomposition can be partitioned into
a small collection of maximal cliques, thus the factor 2t can be further reduced.
For example, in Figure 1(c), node {1, 2, 5, 3, 8} contains two cliques {1, 2, 5}, and
{3, 8} (also see Figure 1(b)). In general, let C1, . . . , Cq, where

∑q
i=1 |Ci| = t, be

the maximal cliques contained in a node, for some small q, then the number of
valid partial ISs for the vertices in the node is at most

∏q
i=1 |Ci| ≤ (t/q)q. While

the right term may reach the worst case extreme et/e ≈ 20.53t when t/q = e,
the base of natural logarithm, in reality, the worst case may never occur because
q usually is small. In the above example, the factor is reduced to 3 × 2 = 6 in
contrast to the number 25 = 32.

Algorithm details. Now we describe the tree decomposition based dynamic
programming algorithm that finds the maximum WIS from the stem graph G =
(V, E). It assumes a binary tree decomposition (T, X), where X = ∪Xm

i=1, for
the stem graph, where m = O(|V |), |Xi| = t, for i = 1, . . . , m. We only discuss
the process for achieving the optimal solution. The technical details for getting
suboptimal solutions are similar.

The algorithm constructs one dynamic programming table mi for every tree
node Xi = {v1, . . . , vt}. Table mi records all possible partial ISs in the subgraph
induced by the set of all the vertices in the subtree rooted at i of the tree
decomposition. There are t columns in the table mi, one for each vertex in
the corresponding tree node Xi. Rows are the combinations of these vertices; a
vertex is selected if and only if the corresponding column takes value 1. There
are additional three columns V, S, Opt in the table.

Rapid ab initio RNA Folding Including Pseudoknots 267

u0…uh…um…ur…ut V S Opt

x0…xh…xm…xr…xt

Xi Xk

Xi Xj Xi-Xk-Xj
mi

f

v1…vp u0…um V S Opt

a1…ap x0…xm

b1…bp x0…xm

Xk-Xi Xi Xk

mk

w1…wq uh…ur V S Opt

c1…cq xh…xr

d1…dq xh…xr

Xj-Xi Xi Xj

mj

g h

Fig. 2. Dynamic programming table construction over tree decomposition. Table
mi is computed also based on the computed tables mk and mj . Row f =
(x0, . . . , xh, . . . , xm, . . . , xr, . . . , xt) in table mi is computed from row g in table mk

and row h of table mj , Row g is the optimal for columns Xk − Xi given the value
(x0, . . . , xm) for columns Xk ∩Xi. Similarly, row h is the optimal for columns Xj −Xi

given the value (xh, . . . , xr) for columns Xj ∩ Xi.

These tables are constructed in a bottom-up fashion, from leaves to the apex
of the tree decomposition (see Figure 2). Each row of a table is a combination of
the vertices in the corresponding node. Column V is set 1 if the row represents
a valid IS. For a leaf node, S is 0 if the row is not a valid IS; otherwise S is the
corresponding weight of the set. For an internal node i that has two children
j and k whose tables mj , mk have been computed, for each row in table mi,
column S is computed as S = w1 + w2 + w3 − w4, where

– w1 is the weight of the row in table mj with the same combination in the
columns corresponding to the vertices in Xj ∩Xi that has column Opt = 1;

– w2 is the weight of the row in table mk with the same combination in the
columns corresponding to the vertices in Xk ∩Xi that has column Opt = 1;

– w3 is the weight of the IS formed by the choices in columns corresponding
to the vertices in Xi −Xj −Xk; and

– w4 is the weight of the IS formed by the same combination in the columns
corresponding to the vertices in Xi ∩Xj ∩Xk.

Column Opt is set 1 if and only if the row represents a valid IS and S in this row
is optimal among all the rows with different choices in the columns corresponding
to the vertices in Xi−Xp given the chosen values same as this row in the columns
corresponding to the vertices in Xi ∩Xp, where node p is the parent of node i.

As mentioned earlier, the enumeration of the combinations of the graph ver-
tices in tree node Xi is along a number of maximal cliques. In general, a greedy
algorithm is used to partition set Xi into a collection of cliques. Consider the
sequence as a straight line and the left (right) region of a stem as an interval.

268 J. Zhao, R.L. Malmberg, and L. Cai

Let all the left regions of the stable stems included in the tree node form an
interval graph. Choose an interval (left region) with the right end at the left
most position among all of the intervals, record all the intervals overlap with
this interval as a clique and remove them, recursively call on the interval graph
left until it is empty. A linear time in t is enough for this procedure.

Tree decomposition of stem graph. Finding the optimal tree decomposi-
tion is NP-hard [2], we use a simple, fast heuristic algorithm to produce a tree
decomposition for the given stem graph. This algorithm is based on a heuristic
method for greedy fill-in [?]. The method will produce a tree decomposition with
small tree width but not necessary the optimal one.

Reordering suboptimal structures. The list of candidate structures, in-
cluding the optimal and the suboptimal ones, are reordered based on a more
sophisticated energy model. In particular, we recalculate the free energy for
each of the candidate structures using a procedure implemented in [16] accord-
ing to the energy model in [20,14] combined with the one in [6], which take
the stem stabilizing energies, loop destabilizing, and pseudoknot energies into
account.

3 Evaluation Results

3.1 Data Sets and Experiment Details

We used three sets of RNA sequences to evalute the algorithm (see Table 1). The
first set is 50 tRNAs with lengths ranging from 71 to 79 (with the average 75). The
second set is 50 small RNA sequences or sequence segments with pseudoknot struc-
tures of lengths ranging from 23 to 113 (with the average 53). The third set is 11
large RNA sequences of lengths ranging from 210 to 412 (with the average 344).

We compared the performance of our algorithm TdFOLD and that of algo-
rithms PKNOTS [17], ILM [19], and HotKnots [16]. We ran all these algorithms
on the tRNAs and the set of small pseudoknot RNAs, and run all but PKNOTS
on the set of large RNAs. We evaluated both accuracy and efficiency of these
algorithms. The accuracy is measured in both sensitivity and specificity. Let RP
be the number of base pairs in the real structure, TP (true positive) be the
number of correctly predicted base pairs and FP (false positive) be the num-
ber of predicted base pairs that do not exist as real structures. We define SE
(sensitivity) as TP/RP , and SP (specificity) as TP/(TP + FP). The perfect
prediction should yield 1 for both sensitivity and specificity values.

For tRNA, we turned off the pseudoknot option for PKNOTS since we already
know they are pseudoknot free. For TdFOLD, parameters were set to default
values and the number of output solutions was set to 40 for tRNAs and small
pseudoknotted RNAs. The parameters were adjusted for each of the large se-
quences. The experiments were run on a PC with 2.8 GHz Intel(R) Pentium 4
processor and 1-GB RAM, running RedHat Enterprise Linux version 4 AS.

Rapid ab initio RNA Folding Including Pseudoknots 269

Table 1. Test sets: sequence IDs with their reference citations

Set one: tRNA[22]

GA0001 GA1262 GA2492 GA3755 GA4966 GC2866 GD1723 GD5199 GE2095
GE4739 GF1407 GF4687 GG0841 GG2136 GG3917 GH0128 GH4536 GI1748
GI4502 GK1078 GK4537 GM0313 GM2284 GM4471 GM5945 GN2837 GP1341
GP3879 GP5312 GQ2684 GR0044 GR0793 GR1516 GR2309 GR3541 GR4508
GR4705 GR4740 GR5278 GT0109 GT1418 GT4178 GT5273 GV0579 GV1734
GV4391 GV5554 GW1796 GW5332 GY4135

Set two: small RNAs

Sequence type Sequence IDs

aptamers NGF-L6 [24]

antizyme ribosomal
frame shifting site Rr ODCanti [24]

HIV-1-RT ligand RNA HIVRT32, HIVRT322, HIVRT33 [16]

hepatitis virus ri-
bozyme

HDV, HDV anti [16]

mRNA Bt-PrP, Ec alpha, Ec S15, Hs-PrP, T4 gene32 [24]

rRNA Sc 18S-PKE21-7 [24]

ribozymes HDV-It ag [24]

ribozymes satRPV, Tt-LSU-P3P7, Bp PK2 [24]

tmRNA Lp PK1, Ec PK1, Ec PK4 [24]

telomerase RNA T.the telo [24]

viral tRNA like OYMV, APLV, CGMMV, SBWMV1, BSMVbeta,
CGMMV PKbulge, ORSV-S1, AMV3 [24]

viral 3’UTR TMV-L UPD-PK3, STMV UPD1-PK3, BVQ3 UPD-PKb,
BSBV1 , PSLVbeta UPD-PK1, PSLVbeta UPD-PK3,
BSBV3, UPD-PKc, SBWMV1 UPD-PKb [24]

viral ribosomal EIAV, PLRV-S [24]; minimal IBV, MMTV,
RNA shifting signals MMTV-vpk, pKA-A, BWYV, SRV-1, T2 gene32[9]

viral RNA PSIV IRES [24]; TYMV, TMV.L, TMV.R [16]

Set three: large RNAs

Sequence type Sequence IDs

RNaseP RNA A.ferr, A.laid (pseudoknot free), A.tum, B.anth, B.halo,

CPB147, D.desu, EM14b-9, E.ther, T.rose [4]

telomerase RNA telo.human [5]

3.2 Testing Results

Table 2 summarize the testing results for different programs on the three RNA
data sets. It shows that TdFOLD has sensitivity 0.81 and specificity 0.75 on
average for the tRNA prediction, which are slightly better than PKNOTS and
significantly better than ILM and HotKnots. For the small pseudoknotted RNAs,
TdFOLD has average sensitivity 0.76, which is less than PKNOTS but greater
than ILM and HotKnots. On the other hand, TdFOLD has average specificity
0.79, which outperforms all the others. TdFOLD is slightly better in overall
accuracy than PKNOTS, which reports the optimal structure according to its

270 J. Zhao, R.L. Malmberg, and L. Cai

sophisticated energy model. This suggests that considering the stems as predic-
tion units can filter some noise. For the large RNA’s, TdFOLD maintains the
same sensitivity (0.54) as HotKnots, which is slightly better than ILM. TdFOLD
has the highest specificity on average.

Table 2. Summary of testing results on tRNAs, smale and large RNAs, where SE:
sensitivity, SP: specificity, T: time (in seconds, if not otherwise noted)

TdFOLD HotKnots ILM PKNOTS

SE SP T SE SP T SE SP T SE SP T

min 0.33 0.29 0.26 0.33 0.25 0.57 0.33 0.25 0.01 0 0 0.11
tRNA max 1.00 1.00 1.37 1.00 1.00 8.32 1.00 1.00 0.15 1.00 1.00 0.24

average 0.81 0.75 0.54 0.72 0.66 3.33 0.75 0.61 0.03 0.78 0.73 0.41

min 0 0 0.04 0 0 0.05 0 0.25 0.001 0 0 0.27
small max 1.00 1.00 0.57 1.00 1.00 57.0 1.00 1.00 0.05 1.00 1.00 >1hr

average 0.76 0.79 0.36 0.69 0.72 5.84 0.73 0.69 0.03 0.78 0.73 1066

min 0.18 0.17 0.46 0.24 0.18 157 0.38 0.25 0.71
large max 0.86 0.73 14.5 0.68 0.63 29710 0.77 0.82 1.49

average 0.54 0.53 3.97 0.54 0.49 4456 0.51 0.44 0.97

Efficiency comparisons are also given in Table 2 on each data set, respectively.
For tRNA’s, the average running time of 0.54 seconds for TdFOLD is slower
than the average 0.03 of ILM and the average 0.41 of PKNOTS but faster than
the average 3.33 of HotKnots. This is not a surprise because we turned the
pseudoknot option off for PKNOTS. For small pseudoknotted RNA’s, TdFOLD
is slower than ILM (0.36 vs. 0.03 seconds), while much faster than HotKnots
and PKNOTS (5.84 and 1066 seconds). For large RNA sequences, it is com-
parable (slightly slower) than ILM (3.97 vs. 0.97 seconds) while much faster
than HotKnots (4456 seconds) on average. In general, the speed of TdFOLD is
comparable to ILM and much faster than PKNOTS and HotKnots.

According to Table 2, all of the programs could predict some sequences (dif-
ferent for each program) totally wrong (zero sensitivity and/or specificity). This
reveals that the available thermodynamic parameters for RNA secondary struc-
tures may not be optimal for all RNA classes. Thus it is hard to guarantee that
the structure with the minimum free energy is the true structure. This makes
the output of a list of low energy suboptimal structures a valuable feature of
a structure prediction algorithm. The prediction results of TdFOLD for 23 tR-
NAs and 19 short pseudoknotted RNAs are improved by considering the top
five structures, rather than only the top one among the 40 output predictions
for each sequence. By “improved” we mean that there is at least one suboptimal
prediction with both the sensitivity and specificity better than (or the same as)
those of the optimal prediction. If there is more than one prediction improved
over the top one, we choose the best among all the improved. For example,
the average sensitivity and specificity are improved to 0.91 and 0.85 for tested
tRNAs, 0.81 and 0.85 for tested short pseudoknotted RNAs.

Rapid ab initio RNA Folding Including Pseudoknots 271

4 Discussion and Conclusion

When related structurally homologous sequences are available, the accuracy of
RNA structure prediction can usually be improved through the use of com-
parative analysis. A fully automated comparative analysis process exists [8,7]
for consensus structure prediction of pseudoknot free RNAs, which iterates be-
tween the following two steps: (a) build an optimal (or nearly optimal) structure
model given the current multiple alignment; and (b) build a multiple alignment
given the current structure model. Nevertheless, for RNA pseudoknots, both
algorithms for step (a) and (b) can be computationally intensive; the implemen-
tation remains a computational challenge.

The tree decomposable model and tree decomposition based techniques make
it possible to implement efficiently the automated comparative analysis process.
Based on an earlier work of ours, pseudoknots can be profiled with the confor-
mational graph model [21] of small tree width; the efficient optimal structure-
sequence alignment developed is ideal for step (b). In addition, the algorithm
introduced in this paper can be employed for step (a), to construct a structure
model for multiple RNAs. As it was done for pseudoknot-free RNAs, the mutual
information content Mi,j can be computed for every pair of aligned columns i, j,
which is defined as the relative entropy

Mi,j =
∑

xi,yj∈{A,C,G,U}
f(xi, yj) log

f(xi, yi)
f(xi)f(yj)

where f(xi, yj) is the frequency for nucleotides xi, yj to occur in pair in these
two columns i, j, and f(xi) and f(yj) are for independent occurrences. The mul-
tiple alignment can be regarded as a ”generic sequence” consisting of columns
as ”nucleotides”. The pairwise interactions between columns result in a confor-
mation structure of the ”generic sequence”, yielding a consensus structure for
the multiple sequences. Therefore, we can use our structure prediction algorithm
TdFOLD to predict the structure of the ”generic sequence” using the mutual
information content Mi,j as ”pairing energy” between columns i and j.

In conclusion, in this paper, we presented a tree decomposition based fast
RNA folding algorithm, which is efficient, accurate, not limited to any specific
class of pseudoknots, and can report a list of suboptimal structures. Combined
with an efficient structure-sequence alignment algorithm we developed earlier
[21], it also can be used to implement an automated comparative RNA structure
analysis process that can infer the pseudoknot consensus structure from a set of
unaligned RNA sequences.

Acknowledgment

This work was supported in part by the NIH BISTI grant No: R01GM072080-
01A1.

272 J. Zhao, R.L. Malmberg, and L. Cai

References

1. J. Abrahams, M. van den Berg, E. van Batenburg, and C. Pleij. Prediction of RNA
secondary structure, including pseudoknotting, by computer simulation. Nucleic
Acids Res., 18:3035–3044, 1990.

2. H. L. Bodlaender. Classes of graphs with bounded tree-width. Tech. Rep. RUU-
CS-86-22, Dept. of Computer Science, Utrecht University, the Netherlands, 1986.

3. H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded tree-
width. In Proc. 15th Int’l Colloquium on Automata, Languages and Programming
ICALP’87, pages 105–119. Springer Verlag, Lecture Notes in Computer Science,
vol. 317, 1987.

4. J. Brown. The ribonuclease p database. Nucleic Acids Res., 27:314, 1999.

5. J.-H. Chen, S.-Y. Le, and J.V. Maize. Prediction of common secondary structures
of RNAs: a genetic algorithm approach. Nucleic Acids Research, 28(4):991–999,
2000.

6. R. Dirks and N. Pierce. A partition function algorithm for nucleic acid secondary
structure including pseudoknots. J. Comput. Chem., 24:16641677, 2003.

7. R. Durbin, S.R. Eddy, A. Krogh, and G.J. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
1998.

8. S.R. Eddy and R. Durbin. RNA sequence analysis using covariance models. Nucleic
Acids Research, 22:2079–2088, 1994.

9. D. Giedroc, C. Theimer, and P. Nixon. Structure, stability and function of RNA
pseudoknots involved in stimulating ribosomal frame shifting. J. of Molecular
Biology, 298:167–185, 2000.

10. I.V. Hicks, A.M. C.A. Koster, and E. Kolotoglu. Branch and tree decomposi-
tion techniques for discrete optimization. In Tutorials in Operations Research:
INFORMS – New Orleans 2005. 2005.

11. Y. Ji, X. Xu, and G.D. Stormo. A graph theoretical approach for predicting
common RNA secondary structure motifs including pseudoknots in unaligned se-
quences. Bioinformatics, 20(10):1591–1602, 2004.

12. A. Ke, K. Zhou, F. Ding, J.H. Cate, and J.A. Doudna. A conformational switch
controls hepatitis delta virus ribozyme catalysis. Nature, 429:201205, 2004.

13. R.B. Lyngso and C.N.S. Pedersen. RNA pseudoknot prediction in energy-based
models. J. of Computational Biology, 7(3-4):409–427, 2000.

14. D.H. Mathews, J. Sabina, M. Zuker, and C.N.S. Pederson. Expanded sequence de-
pendence of the thermodynamic parameters improves prediction of RNA secondary
structure. J. Mol. Biol., 288:911–940, 1999.

15. R. Nussinov, G. Pieczenik, J. Griggs, and D. Kleitman. Algorithms for loop match-
ings. SIAM J. Applied Mathematics, 35:68–82, 1978.

16. J. Ren, B. Rastegart, A. Condon, and H.H. Hoos. HotKnots: Heuristic prediction
of RNA secondary structures including pseudoknots. RNA, 11:1194–1504, 2005.

17. E. Rivas and S.R. Eddy. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. J. Molecular Biology, 285:2053–2068, 1999.

18. N. Robertson and P.D. Seymour. Graph minors ii. algorithmic aspects of tree
width. J. Algorithms, 7:309–322, 1986.

19. J. Ruan, G.D. Stormo, and W. Zhang. An iterated loop matching approach to
the prediction of RNA secondary structures with pseudoknots. Bioinformatics,
20(1):58–66, 2004.

Rapid ab initio RNA Folding Including Pseudoknots 273

20. M.J. Serra, D.H. Turner, and S.M. Freier. Predicting thermodynamic properties
of RNA. Meth. Enzymol., 259:243–261, 1995.

21. Y. Song, C. Liu, R. L. Malmberg, F. Pan, and L. Cai. Tree decomposition based
fast search of RNA structures including pseudoknots in genomes. In Proc. Comput.
System Bioinformatics Conf. CSB’05, pages 223–234. IEEE Computer Society,
2005.

22. M. Sprinzl, C. Horn, M. Brown, A. Ioudovitch, and S. Steinberg. Compilation of
tRNA sequences and sequences of tRNA genes. Nucleic Acids Res., 26:148–153,
1998.

23. J. Tabaska, R. Cary, H. Gabow, and G. Stormo. An RNA folding method capable
of identifying pseudoknots and base triples. Bioinformatics, 14(8):691–699, 1998.

24. F. van Batenburg, A. Gultyaev, C. Pleij, J. Ng, and J. Oliehoek. Pseudobase: a
database with RNA pseudoknots. Nucleic Acids Res., 28:201–204, 2000.

25. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences us-
ing thermodynamics and auxiliary information. Nucleic Acids Res., 9(1):133–148,
1981.

Flux-Based vs. Topology-Based Similarity

of Metabolic Genes

Oleg Rokhlenko1, Tomer Shlomi2,	, Roded Sharan2,		,
Eytan Ruppin2, and Ron Y. Pinter1

1 Dept. of Computer Science, Technion–IIT, Haifa 32000, Israel
{olegro, pinter}@cs.technion.ac.il

2 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
{shlomito, roded, ruppin}@tau.ac.il

Abstract. We present an effectively computable measure of functional
gene similarity that is based on metabolic gene activity across a vari-
ety of growth media. We applied this measure to 750 genes comprising
the metabolic network of the budding yeast. Comparing the in silico
computed functional similarities to those obtained by using experimen-
tal expression data, we show that our computational method captures
similarities beyond those that are obtained by the topological analysis of
metabolic networks, thus revealing—at least in part—dynamic character-
istics of gene function. We also suggest that network centrality partially
explains functional centrality (i.e. the number of functionally highly sim-
ilar genes) by reporting a significant correlation between the two. Finally,
we find that functional similarities between topologically distant genes
occur between genes with different GO annotations.

1 Introduction

The study of biological networks has attracted considerable attention in recent
years, including the construction of mathematical models to elucidate both cell
activity as well as genes’ function and expression. Much of the work to date has
attempted to establish measures for the similarity (or distance) between genes
that are based on the topological properties of metabolic networks. Even though
recent analyses have provided valuable insights regarding this issue [1,2], topo-
logical characteristics alone (as devised by e.g. Kharchenko et al. [3], Chen and
Vitkup [4]) offer only a static description of the properties of interest. On the
other hand, accurate prediction of dynamic cell activity using kinetic models
requires detailed information on the rates of enzyme activity which is rarely
available; moreover, such analysis is usually limited to small-scale networks.

Fortunately, for metabolic networks, the use of stochiometry and other sources
of information provides an added value over the topology of the underlying struc-
ture. Specifically, constraint-based stochiometric models have emerged as a key

� Supported in part by the Tauber Fund.
�� Supported by an Alon Fellowship.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 274–285, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Flux-Based vs. Topology-Based Similarity of Metabolic Genes 275

method for studying such networks permitting large-scale analysis thereof. They
use genome-scale networks to predict steady-state metabolic activity, regardless
of specific enzyme kinetics. In these models, stoichiometric, thermodynamic, flux
capacity and possibly other constraints affect the space of possible flux distrib-
utions attainable by a metabolic network.

In this paper we devise an effectively computable functional similarity measure
between genes that is based on their metabolic activity. Such a measure would
allow us to perform large scale in silico experiments and predict functional rela-
tions that can then be validated by experimental methods. Specifically, we sug-
gest a method for determining similarities in gene activities that is based on Flux
Balance Analysis (FBA). We first suggest a knockout-based measure but find it
to be only moderately correlated with experimental data (of gene co-expression,
see below). We then employ a measure of metabolic genes co-activity (MGCA),
which tells how similar gene functions are in terms of the correlation between
their corresponding flux activity vectors across a large variety of growth media.
This latter measure, already used in a more limited scope by [5], is significantly
better than the former measure in terms of correlation with experimental data.

Our evaluation of the suggested measures is based on testing their correlations
with experimental data on similarity in gene expression, to assess their veracity.
The basic relation between metabolic fluxes and gene expression was already
studied and established previously both computationally (showing only a mod-
erate correlation) as well as experimentally. Recall that the metabolic state of
an organism is controlled via transcriptional regulation which adjusts gene ex-
pression levels according to metabolic demands [6]. Previous studies have shown
that the expression patterns of enzyme coding genes are correlated with the flux
patterns predicted by FBA: Schuster et al. [7,8] and Famili et al. [5] have shown
that genes, associated with fluxes which are predicted to change together when
shifting from one medium to another (e.g. in diauxic shift), are co-expressed un-
der these conditions; Reed and Palsson [9] have shown that the genes associated
with fluxes that are correlated within the solution space also exhibit moderate
levels of correlation in their expression. Recently, Bilu et al. [10] proposed a more
direct relation between expression and flux where the range of possible optimal
flux values for a given reaction reflects evolutionary constraints on the expression
levels of its associated enzymes; specifically, they have shown that the regula-
tion of reactions which have an optimal fixed value is under strong selection to
maintain their flux at the precise levels needed, while the regulation of reactions
which may have a broad range of optimal values is under weaker selection.

In this work we extend upon these previous studies to look into ways of build-
ing upon the reported correlation between fluxes and expression, to construct
efficient measures of functional similarity among metabolic genes. To this end,
in contrast with the previous studies, we examine the relation between fluxes
and expression while concomitantly controlling for correlations caused solely by
the network’s topology.

Our comparison focuses on 750 metabolic genes of the yeast Saccharomyces
cerevisiae. We find the correlation between MGCA and co-expression to be

276 O. Rokhlenko et al.

statistically significant. Furthermore, it remains so even after cancelling the
effect of the underlying (static) network topology. These results support the
notion that our measure indeed captures the true functional similarity between
metabolic genes.

2 Preliminaries—Modeling Metabolism and Flux Balance
Analysis

Flux Balance Analysis (FBA) [11,12] is a particular constraint-based method
which assumes that the network is regulated to maximize or minimize a certain
cellular function, which is usually taken to be the organism’s growth rate. FBA
has been demonstrated to be a very useful technique for the analysis of metabolic
capabilities of cellular systems [13,14]. It involves carrying out a steady state
analysis, using the stoichiometric matrix (as defined below) for the system in
question. The system is assumed to be optimized with respect to functions such
as maximization of biomass production or minimization of nutrient utilization;
it is solved accordingly to obtain a steady state flux distribution, which is then
used to interpret the metabolic capabilities of the system.

In FBA, the constraints imposed by stoichiometry in a chemical network at
steady state are analogous to Kirchoff’s Second Law for the flow of currents in
electric circuits [15], namely—for each of the M metabolites in a network the net
sum of all production and consumption fluxes, weighted by their stoichiometric
coefficients, is zero:

N∑
j=1

Sijvj = 0, i = 1, . . . , M (1)

Here, Sij is the element of the stoichiometric matrix S corresponding to the
stoichiometric coefficient of metabolite i in reaction j. The flux vj is the rate
of reaction j at steady state, and is the j-th component of an N -dimensional
flux vector v, where N is the total number of fluxes. In addition to internal
fluxes, which are associated with chemical reactions, v includes exchange fluxes
that account for metabolite transport through the membrane. The steady-state
approximation is generally valid because of the fast equilibration of metabolite
concentrations (seconds) with respect to the time scale of genetic regulation
(minutes) [16].

Additional constraints, including those pertaining to the availability of nutri-
ents or to the maximal fluxes that can be supported by enzymatic pathways,
can be introduced as the following inequalities:

αj ≤ vj ≤ βj (2)

For example, for a substrate uptake flux vj , one can set αj and βj to be equal
to the corresponding measured or imposed values. Eq. 2 can also be used to
distinguish reversible and irreversible reactions, where αj = 0 for the latter.

Flux-Based vs. Topology-Based Similarity of Metabolic Genes 277

All flux vectors that satisfy the constraints mentioned above define a feasible
space, Φ. For an underdetermined system, as is typically the case in FBA mod-
els of cellular metabolic networks [13], Φ is a convex set in the N -dimensional
space of fluxes [17]. Due to the linear nature of Φ, it is possible to use linear
programming [18] to characterize the points in Φ that maximize or minimize
a given linear objective function. A natural choice for an objective function in
metabolic models of prokaryotes and simple eukaryotes is biomass production
[13,14], as it is reasonable to hypothesize that unicellular organisms have evolved
towards maximal growth performance. This process is formalized by introducing
a growth flux that transforms a linear combination of fundamental metabolic
precursors into biomass.

The maximization of biomass production is implemented by defining an ad-
ditional flux vgro associated with cell growth. For this flux, the stoichiometric
factors of the reactants are the experimentally known proportions ci of metabo-
lite precursors Xi contributing to biomass production [13]:

c1X1 + c2X2 + . . . + cMXM
vgro→ Biomass (3)

The search for the flux vector maximizing vgro under the constraints of Eqs.
1 and 2 is solved using the Simplex algorithm.

The theoretical basis of FBA is supported by several experiments. These in-
clude empirical validation of growth yield and flux predictions [13,14], measure-
ments of uptake rates around the optimum under various conditions [19], and
results from large-scale gene deletion experiments [20].

For the stoichiometric analysis of the metabolic network of S. cerevisiae, we
have used the reconstruction by Duarte, Herrgard, and Palsson [21]. The nodes of
this network correspond to metabolic genes, and the edges correspond to the con-
nections established by metabolic reactions. Two metabolic genes are connected
if the corresponding enzymes share a common metabolite among their substrates
or products. The list of metabolic reactions, and the 1060 (metabolites) by 1149
(fluxes) stoichiometric matrix (available at http://gcrg.ucsd.edu) were com-
piled using data from public databases and the literature. The 1149 reactions are
associated with 750 genes. As in previous FBA formulations, we use inequalities
(Eq. 2) to limit nutrient uptake and to implement reactions’ irreversibility. In ad-
dition to the 1149 internal reactions, we added to the model 116 uptake/excretion
reactions, for each of the metabolites listed as “extracellular” in the basic model.

3 Similarity Measures for Metabolic Genes

In the context of the aforementioned motivation, we suggest two techniques for
obtaining the distance between metabolic genes: a knockout-functional (KF)
scheme and a growth-functional (GF) scheme. The biological plausibility of the
obtained distance measures is validated by correlating them with the correspond-
ing similarity measure obtained by expression data.

278 O. Rokhlenko et al.

3.1 Knockout-Functional Scheme

Cellular response to a gene knockout involves rerouting of metabolic flux through
alternative pathways and the utilization of isoenzymes [22,23]. We hypothesize
that similar metabolic responses to gene knockouts may provide evidence for sim-
ilar metabolic functionality between genes. Based on this hypothesis, we define
the KF similarity measure between gene pairs as the similarity in the metabolic
response following their knockout.

Fig. 1. Schematic illustration of the proposed flux sim-
ilarity model. w stands for the optimal flux distribu-
tions on the wild-type metabolic network, v1 stands
for the optimal flux distribution on the metabolic net-
works with the first flux knocked-out, and v2 stands
for the optimal flux distribution on the metabolic net-
works with the second flux knocked-out.

Predicting the metabolic
response for gene knock-
outs is a more difficult
task than predicting the
metabolic state of wild-
type strains. Gene dele-
tion is commonly modeled
by constraining the flux
through the reactions as-
sociated with a given gene
to zero, and applying FBA
[13]. However, it turns out
that the metabolic state of
the knocked-out strain is
not necessarily optimal in
terms of growth rate, and
thus in many cases FBA’s
predictions are inaccurate.
Instead, it was hypothe-
sized that the cell adapts to

gene knockouts by minimizing the change in its metabolic state. Specifically,
the Minimization of Metabolic Adjustment (MOMA) approach searches for a
metabolic state for a knocked-out strain with minimal distance, under the L2
norm, from the flux distribution of the wild-type strain [22]. Recently, a new
method called Regulatory On-Off Minimization (ROOM) was suggested to pre-
dict metabolic states following gene knockouts, and was shown to provide better
predictions of knockout phenotypes [23]. ROOM aims to minimize the number
of regulatory changes required for the adaptation by minimizing the number
of significant flux changes between the metabolic states of the wild-type and
knocked-out states (i.e. using the norm L0).

A naive method for measuring the distance between the metabolic responses
of two gene knockouts would be to simulate the knockout of each of them in-
dividually using ROOM, and then compute the distance between the obtained
flux distributions. However, in many cases ROOM (like FBA and MOMA) pro-
vides multiple possible metabolic states for the knocked-out strain rather than a
single solution. In these cases, it is not clear how to define the similarity measure
between two genes.

Flux-Based vs. Topology-Based Similarity of Metabolic Genes 279

To overcome this problem we define the KF similarity measure as the mini-
mal distance between the optimal ROOM solutions for the two genes1. This is
achieved by formulating a single optimization problem to find two ROOM so-
lutions with minimal distance between them. The schematic illustration of our
model is presented in Figure 1.

Notably this formulation depends on the choice of a wild-type and thus we
repeat our analysis for several different wild-types. Furthermore, since ROOM
requires Mixed Integer Linear Programming (MILP) optimization which is NP-
hard, we use a relaxed version of ROOM and, in addition, we use the L1 norm
instead of L0. The use of the L1 norm is similar to a variant of ROOM, called
ROOM-LP, that was shown to provide similar predictions to ROOM [23]. The
L1 norm was also used by Kuepfer et. al. [24] for a similar purpose of knockout
prediction. The distance between the two flux distributions of the knocked-out
strains is also minimized using the L1 norm.

The optimization problem is formulated as a LP problem as follows:

min ‖v1 − v2‖L1

s.t.
S · v1 = 0; vmin ≤ v1 ≤ vmax; v1[ko1] = 0, ko1 ∈ A1;
S · v2 = 0; vmin ≤ v2 ≤ vmax; v2[ko2] = 0, ko2 ∈ A2;
‖w − v1‖L1 = l1; ‖w − v2‖L1 = l2;

where w is the wild-type flux distribution, A1 and A2 are sets of reactions as-
sociated with the deleted genes, and li (i = 1, 2) are the optimal solutions of a
single optimization problem:

min ‖v − w‖L1

s.t.
S · v = 0; vmin ≤ v ≤ vmax; vko1 = 0, ko1 ∈ A;

Solving the above optimization problem we receive a measure of similarity
between fluxes.

3.2 Growth-Functional Scheme

We hypothesize that the regulation of reactions that are active (different than
zero) together across certain media and passive (equal to zero) together across
others should be similar. In order to evaluate our hypothesis, we follow and
extend the approach of [10], computing genes’ activities across 100 randomly
generated growth media.

To pursue this possibility we used flux variability analysis [9,25]: for each
reaction we computed the maximal and minimal flux values attainable in the
space of optimal flux distributions for growth conditions simulating 100 different

1 We use the distance notion instead of the similarity one both in the KF and GF
schemes for sake of clarity and for being consistent with commonly used network
topology distances.

280 O. Rokhlenko et al.

growth media. Random growth media were generated by setting limiting values
to the uptake reactions independently at random. With probability 0.5, the
maximal uptake rate was set to 0, i.e. only excretion was allowed. Otherwise,
uptake rate was limited to a value chosen uniformly at random in the range
[0.01, 5], at a resolution of 0.01. A similar sampling method was used in [26].
In addition, in order to ensure enough variability between media, we switched
between aerobic and anaerobic growth media with probability 0.5.

For each generated medium we simulated growth conditions similar to [5]
and for each reaction checked if it is active across the current growth media. A
reaction is considered active in a given flux distribution if its associated flux is
non-zero, namely either its maximum or minimum are different than zero. Active
genes were denoted by ’0’ and nonactive ones by ’1’. This way we created for
each gene a binary vector of its activity across a series of generated media.

We define a measure of metabolic genes co-activity (MGCA) as the Jaccard
coefficient [27] between two binary vectors reflecting metabolic genes’ activity.
The binary Jaccard coefficient measures the degree of overlap between two sets
of values, xa and xb, and is computed as the ratio between the number of shared
attributes of xa and xb and the number possessed by xa or xb:

J(xa, xb) =
xa ∩ xb

xa ∪ xb
(4)

The pseudo-code of the entire procedure is presented in Figure 2.

Algorithm 1: FindGenesDist(N)
Input: N : the number of required media.
Output: results: matrix num genes × num genes containing the distance

between metabolic genes.

for k=1..N do
for each external flux f do

with probability 0.5, set f = 0;
otherwise f receives a random value chosen uniformly in [0.01, 5];

Run FBA to maximize biomass(growth rate)
and obtain objective value (wild growth rate);

Add constraint: biomass ≥ 0.9 ∗ wild growth rate;
for i=1..num fluxes do

Run FBA to maximize flux i, obtain imax;
Run FBA to minimize flux i, obtain imin;

for each gene g do
if for one of its related fluxes imax = imin = 0 then

MT[g][k] = 1;
else

MT[g][k] = 0;
for each gene g1 do

for each gene g2 �= g1 do
results[g1][g2] = Jaccard coefficient(MT[g1],MT[g2]);

Fig. 2. The process for computing the GF-based measure

Flux-Based vs. Topology-Based Similarity of Metabolic Genes 281

4 Results

Recall that the metabolic state of an organism is controlled by transcriptional
regulation which adjusts gene expression levels according to metabolic demands
[6]. Thus the experimental pairwise correlations serve as the true benchmark rod
to which we compare the computational measures we compute to find out which
is the best, i.e. closest to reality.

The first computational similarity measure proposed [3] was based on topologi-
cal properties of the metabolic network . We start by repeating these experiments
and then show how our measure can go beyond topological measures.

The obtained metabolic network is used to calculate network distance between
genes. We define a pair of directly connected metabolic genes as separated by
distance 1, and the network distance between genes X and Y is the length of
the shortest path from X to Y in the metabolic network. While any metabolite
can be used to establish connections between metabolic genes, the relationships
established by the common metabolites and cofactors—such as ATP, water or
hydrogen—are not likely to connect genes with similar metabolic functions.

In compiling a metabolic network, we consider a subset of metabolites which
excludes the most highly connected metabolic species. An exclusion threshold
was determined based on the connectivity of the resulting network. A total of the
10 most highly connected metabolites (ATP, ADP, AMP, CO2, H, H2O, NADP,
NADPH, phosphate and diphosphate), which compose 1% of all metabolites,
and their mitochondrial and external analogs were excluded. We also tried to
exclude up to the top 3% of all metabolites, however we found out that the
general trends described in this paper are not sensitive to the precise choice of
the excluded set of metabolites.

We compared the correlation between the gene functional similarity measure
and their expression similarity. To this end, we used Rosetta’s “compendium”
dataset [28] which measures expression profiles of over 6200 S. cerevisae ORFs
across 287 deletion strains and 13 chemical conditions. In addition, the dataset
contains 63 negative control measurements comparing two independent cultures
of the same strain. These were used to establish individual error models for each
ORF, providing not only the raw intensity and the ratio measurement values for
each experimental data point, but also a p-value evaluating the significance of
change in expression level. The expression similarity measure between ORFs X
and Y was computed according to 1− Spearman rank(px, py) where px and py

are expression profile vectors of X and Y , respectively, and the Spearman rank
was calculated as in [29].

As in [3], we observed that the expression distance increases monotonically
with network distance (R2 = 0.78, p-value = 1.2 · 10−8), demonstrating that
genes closer to each other in the metabolic network tend to have, on average,
higher level of coexpression.

Measuring the correlation between the KF-based distance and those based on
the expression data we observed (see Figure 3) a moderate correlation (R2=0.36
in the negatively correlated expressed profiles with a p-value of 8.6 · 10−2 , and
R2 = 0.45 in the positively ones with a p-value of ≤ 4.6 · 10−2). Note that the

282 O. Rokhlenko et al.

(a) (b)

Fig. 3. Correlation between expression levels and genes activities under the KF mea-
sure. (a) Negatively expressed pairs. (b) Positively expressed pairs.

(a) (b)

Fig. 4. Correlation between expression levels and genes’ activities under the GF mea-
sure. (a) Negatively expressed pairs. (b) Positively expressed pairs.

obtained correlation is robust to the initial wild-type metabolic state, as similar
correlation levels were observed when starting from different wild-types.

As for the GF-based measure, we observe (see Figure 4) that it exhibits a
significant correlation with the expression similarity (R2 = 0.78 in the negatively
correlated expressed profiles with a p-value of 5.15 · 10−8, and R2 = 0.94 in the
positively ones with p-value ≤ 1 · 10−20).

Finally, we observe a significant enhancement of the GF-based measure over
the static (topological) metabolic distance indicating that this static distance
can explain only partially the demand for common regulation. We use a partial
correlation method that describes the relationship between two variables whilst
eliminating the effects of another variable on this relationship, namely network
distance in our case. Our results show significant partial correlation (R2=0.65,

Flux-Based vs. Topology-Based Similarity of Metabolic Genes 283

with a p-value of 3.8 · 10−6) between expression levels and our MGCA measure
given a metabolic network distance. This higher correlation for our measure
supports the fact that the FBA model captures the dynamic metabolic activity
of the cell, and that the regulation system indeed works to maximize the growth
rate. Moreover, the results stay significant with every thresholds for excluding
“currency metabolites” from the metabolic network in the range from 1% to 3%.

In order to evaluate the difference between the MGCA measure and the
metabolic network distance measure we analyzed two sets of pairs of genes:
one containing pairs of genes that are close under the network distance and dis-
tant under the MGCA measure, and vice versa. We observed that the first set
is significantly enriched with the GO term protein biosynthesis (GO:006412)—
25 annotated genes out of 104 resulting in a p-value ≤ 0.001, as well as with
the GO term nucleobase, nucleoside, nucleotide and nucleic acid metabolism
(GO:006139)—40 annotated genes out of 104 also resulting in a p-value ≤ 0.001.
An engrossing result was that the complementary set (genes that are close un-
der the MGCA measure but are distant under the network topology measure)
showed no significant enrichment, possibly testifying that such functional simi-
larities occur across a broad and homogeneous span of functional annotations.

Fig. 5. The correlation between functional centrality
and network centrality

Functional enrichments
were computed based on
the GO-SLIM process an-
notations [30] for genes.
Yeast GO-SLIM annota-
tions were obtained from
SGD [31]. For a given set
S and a given term t,
the functional enrichment
score was computed as fol-
lows: suppose S has n(t)
genes that are annotated
with term t (or with a
more specific term). Let
p(t) be the hypergeomet-
ric probability for observ-
ing n(t) or more proteins
annotated with the term t
in a protein subset of size

|S|. Having found a term t0 with minimal probability p(t0), the score was set to
the p-value of the enrichment under term t0, computed by comparing p(t0) with
the analogous probabilities for 10,000 random sets of proteins of size |S|.

In addition we looked at the correlation between the network degree of each
gene and its functional degree, i.e. the number of functionally highly similar
(Jaccard coefficient ≤ 0.3) genes (see Figure 5). As we received a significant
correlation of R2 = 0.4 with a p-value ≤ 0.001, it seems that network centrality
explains (at least in part) functional centrality. Namely, the more alternative

284 O. Rokhlenko et al.

pathways go through a given gene, the more functionally significant it is. We also
observed that the correlation is robust to the functionally similarity threshold
in the range form 0.01 to 0.3.

5 Conclusions

This paper is the first to show that functional flux-based similarity measures be-
tween genes can go beyond previous computational measures based on
network topology. We applied two schemes to compute this distance: the knockout-
functional (KF) scheme and the growth-functional (GF) scheme. While the for-
mer shows a fairly moderate correlation with the experimental results, the lat-
ter provides a strong, statistically-significant measure. One possible explana-
tion of this behavior may be that the GF studies probe the natural wild type
across a variety of media, whereas the KF method does it in less natural strains
and in a sole media. The other reason is the more cumbersome computational
method used in the KF case, which is likely to add significant noise to the results
obtained.

References

1. Jeong, H., Tombor, B., Albert, R., Oltavi, Z., Barabasi, A.: The large-scale orga-
nization of metabolic networks. Nature 407 (2000) 651–654

2. Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., Barabasi, A.: Hierarchical organi-
zation of modularity in metabolic networks. Science 297 (2002) 1551–1555

3. Kharchenko, P., Church, G.M., Vitkup, D.: Expression dynamics of a cellular
metabolic network. Molecular Systems Biology 1 (2005) E1–E6

4. Chen, L., Vitkup, D.: Predicting genes for orphan metabolic activities using phy-
logenetic profiles. Genome Biol. 7 (2006) R17

5. Famili, I., Forster, J., Nielsen, J., Palsson, B.Ø.: Saccharomyces cerevisiae phe-
notypes can be predicted by using constraint-based analysis of a genome-scale
reconstructed metabolic network. Proc Natl Acad Sci U S A 100 (2003) 13134–
13139

6. Zaslaver, A., Mayo, A., Rosenberg, R., Bashkin, P., Sberro, H., et al: Just-in-time
transcription program in metabolic pathways. Nat Genet 36 (2004) 486–491

7. Schuster, S., Dandekar, T., Fell, D.: Detection of elementary flux modes in bio-
chemical networks: a promising tool for pathway analysis and metabolic engineer-
ing. Trends Biotechnol 17 (1999) 53–60

8. Schuster, S., Klamt, S., Weckwerth, W., Moldenhauer, F., Pfeiffer, T.: Use of net-
work analysis of metabolic systems in bioengineering. Bioprocess and Biosystems
Engineering 24 (2002) 363–372

9. Reed, J., Palsson, B.: Genome-scale in silico models of e. coli have multiple equiv-
alent phenotypic states: assessment of correlated reaction subsets that comprise
network states. Genome Res 14 (2004) 1797–1805

10. Bilu, Y., Shlomi, T., Barkai, N., Ruppin, E.: Conservation of expression and se-
quence of metabolic genes is reflected by activity across metabolic states. PLoS
Comp. Bio. (in press) (2006)

Flux-Based vs. Topology-Based Similarity of Metabolic Genes 285

11. Fell, D., Small, J.: Fat synthesis in adipose tissue. An examination of stoichiometric
constraints. Biochem J 238 (1986) 781–786

12. Kauffman, K., Prakash, P., Edwards, J.: Advances in flux balance analysis. Curr
Opin Biotechnol 14 (2003) 491–496

13. Price, N.D., Reed, J.L., Palsson, B.Ø.: Genome-scale Models of Microbial Cells:
Evaluating the consequences of constraints. Nature Reviews Microbiology 2 (2004)
886–897

14. Varma, A., Palsson, B.: Metabolic capabilities of Escherichia coli: II. Optimal
growth patterns. J. Theor. Biol. 165 (1993) 503–522

15. Schilling, C.H., Edwards, J.S., Palsson, B.: Toward metabolic phenomics: analysis
of genomic data using flux balances. Biotechnol. Prog 15 (1999) 288–295

16. Fell, D.: Understanding the Control of Metabolism. Portland Press, London (1996)
17. Schilling, C.H., Edwards, J.S., Letscher, D., Palsson, B.Ø.: Combining pathway

analysis with flux balance analysis for the comprehensive study of metabolic sys-
tems. Biotechnol. Bioeng. 71 (2000) 286–306

18. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Kluwer Aca-
demic Publishers, Boston (1996)

19. Edwards, J., Ibarra, R., Palsson, B.: In silico predictions of Escherichia coli
metabolic capabilities are consistent with experimental data. Nat Biotechnol 19
(2001) 125–130

20. Badarinarayana, V., Estep, P.W., Shendure, J., Edwards, J., Tavazoie, S., Lam, F.,
Church, G.M.: Selection analyses of insertional mutants using subgenic-resolution
arrays. Nat. Biotechnol. 19 (2001) 1060–1065

21. Duarte, N., Herrgard, M., Palsson, B.Ø.: Reconstruction and validation of Sac-
charomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic
model. Genome Res 14 (2004) 1298–1309

22. Segre, D., Vitkup, D., Church, G.: Analysis of optimality in natural and perturbed
metabolic networks. Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 15112–15117

23. Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic
flux changes after genetic perturbations. Proc. Natl. Acad. Sci. U. S. A. 102 (2005)
7695–7700

24. Kuepfer, L., Sauer, U., Blank, L.M.: Metabolic functions of duplicate genes in
Saccharomyces cerevisiae. Genome Res. 15 (2005) 1421–1430

25. Mahadevan, R., Schilling, C.: The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metab Eng 5 (2003) 264–276

26. Almaas, E., Oltvai, Z., Barabasi, A.: The activity reaction core and plasticity of
metabolic networks. PLoS Comput Biol 1 (2005) e68

27. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill, New-York (1983)

28. Hughes, T., et. al.: Flux analysis of underdetermined metabolic networks: the quest
for the missing constraints. Cell 102 (2000) 109–126

29. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C++: the art of scientific computing. Cambridge University Press, Cambridge
(2002)

30. Ashburner, M., et. al.: Gene Ontology: tool for the unification of biology. Nat.
Genet. 25 (2000) 25–29

31. Issel-Tarver, L., et. al.: Saccharomyces Genome Database. Methods Enzymol 350
(2002) 329–346

Combinatorial Methods for Disease Association

Search and Susceptibility Prediction

Dumitru Brinza	 and Alexander Zelikovsky		

Department of Computer Science, Georgia State University, Atlanta, GA 30303
dima@cs.gsu.edu, alexz@cs.gsu.edu

Abstract. Accessibility of high-throughput genotyping technology
makes possible genome-wide association studies for common complex
diseases. When dealing with common diseases, it is necessary to search
and analyze multiple independent causes resulted from interactions of
multiple genes scattered over the entire genome. This becomes com-
putationally challenging since interaction even of pairs gene variations
require checking more than 1012 possibilities genome-wide. This paper
first explores the problem of searching for the most disease-associated
and the most disease-resistant multi-gene interactions for a given popu-
lation sample of diseased and non-diseased individuals. A proposed fast
complimentary greedy search finds multi-SNP combinations with non-
trivially high association on real data. Exploiting the developed methods
for searching associated risk and resistance factors, the paper addresses
the disease susceptibility prediction problem. We first propose a relevant
optimum clustering formulation and the model-fitting algorithm trans-
forming clustering algorithms into susceptibility prediction algorithms.
For three available real data sets (Crohn’s disease (Daly et al, 2001),
autoimmune disorder (Ueda et al, 2003), and tick-borne encephalitis
(Barkash et al, 2006)), the accuracies of the prediction based on the
combinatorial search (respectively, 84%, 83%, and 89%) are higher by
15% compared to the accuracies of the best previously known meth-
ods. The prediction based on the complimentary greedy search almost
matches the best accuracy but is much more scalable.

1 Introduction

Disease association studies analyze genetic variation across diseased and non-
diseased individuals. The difference between individual DNA sequences occurs
at a single-base sites, in which more than one allele is observed across popula-
tion. Such variations are called single nucleotide polymorphisms (SNPs). Disease
association analysis searches for a SNP with frequency among diseased individ-
uals (cases) considerably higher than among non-diseased individuals (controls).

� Partially supported by GSU Molecular Basis of Disease Fellowship.
�� Partially supported by NIH Award 1 P20 GM065762-01A1 and US CRDF Award

MOM2-3049-CS-03.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 286–297, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Combinatorial Methods for Disease Association Search 287

When dealing with common diseases, it is necessary to search and analyze multi-
ple independent causes each resulted from interaction of multiple SNPs scattered
over the entire genome.

Accessibility of high-throughput genotyping technology makes possible
genome-wide association studies for common complex diseases. The number of si-
multaneously typed SNPs for association and linkage studies is reaching 250,000
for SNP Mapping Arrays [1]. High density maps of SNPs as well as massive
DNA data with large number of individuals and number of SNPs become pub-
licly available [2].

Several challenges in genome-wide association studies of complex diseases have
not yet been adequately addressed [8]: interaction between non-linked genes, mul-
tiple independent causes, multiple testing adjustment, etc. The computational
challenge (as pointed in [8]) is caused by the dimension catastrophe. Indeed,
two-SNP interaction analysis (which can be more powerful than traditional one-
by-one SNP association analysis [12]) for a genome-wide scan with 1 million
SNPs (3 kb coverage) will afford 1012 possible pairwise tests. Multi-SNP inter-
action analysis reveals even deeper disease-associated interactions but is usually
computationally infeasible and its statistical significance drastically decreases
after multiple testing adjustment [19,20]. In this paper we explore optimiza-
tion approach to resolve these issues instead of traditionally used statistics and
computational intelligence.

In order to handle data with huge number of SNPs, one can extract infor-
mative (indexing) SNPs that can be used for (almost) lossless reconstructing
of all other SNPs. Using multiple linear regression based method [11], we have
obtained promising results [6]. However, exhaustive searching for all possible
SNP combinations is still very slow. A combinatorial search method for find-
ing disease-associated multi-SNP combinations (MSC) applied to index SNPs
resulted in finding genetic risk factors which are statistically significant even
after multiple testing adjustment, e.g., a few statistically significant MSCs were
found (i) for tick-borne encephalitis virus-induced disease [4] and (ii) for Crohn’s
disease [3] while no single SNP or pair of SNPs show significant association [6].

In this paper we formulate the optimization problem of finding the most
disease-associated multi-SNP combination for given case-control data.
Since it is plausible that common diseases can have also genetic resistance factors,
we also search for the most disease-resistant multi-SNP combination. Association
of risk or resistance factors with the disease can be measured in terms of p-value
of the skew in case and control frequencies, risk rates or odds rates. Here we con-
centrate on so called positive predictive value (PPV) which is the frequency of
diseased individuals among all individuals with a given multi-SNP combination.
This optimization problem is NP-hard and can be viewed as a generalization
of the maximum independent set problem. We propose a fast complimentary
greedy search which we compare with the exhaustive search and combinatorial
search method proposed in [6]. Although complimentary greedy search cannot
guarantee finding of close to optimum MSCs, in our experiments with real data,
it finds MSCs with non-trivially high PPV. For example, for Crohn’s disease

288 D. Brinza and A. Zelikovsky

data [3], complimentary greedy search finds in less than second a case-free MSC
containing 24 controls, while exhaustive and combinatorial searches need more
than 1 day to find case-free MSCs with at most 17 controls.

We next address the disease susceptibility prediction problem (see
[16,17,18,21,22]) exploiting the developed methods for searching associated risk
and resistance factors. We propose a new optimum clustering problem formu-
lation and suggest a model-fitting method transforming a clustering algorithm
into the corresponding model-fitting susceptibility prediction algorithm. Since
common diseases can be caused by multiple independent and co-existing factors,
we propose association-based clustering of case/control population. The resulted
association-based combinatorial prediction algorithm significantly outperforms
existing prediction methods. For all three real data sets that were available to
us (Crohn’s disease [3], autoimmune disorder [10], and tick-borne encephalitis
[4]) the accuracy of the prediction based on combinatorial search is higher by
15% compared to the accuracy of all previously known methods implemented in
[16,15]. The accuracy of the prediction based on complimentary greedy search
almost matches the best accuracy but is much more scalable.

In the next section we will formulate the disease association search problem,
overview the searching algorithms and their quality, reformulate the optimization
version of disease association search as an independent set problem and propose
the complimentary greedy search algorithm. Section 3 is devoted to the disease
susceptibility prediction problem. We give the prediction and relevant clustering
optimization problem formulations, propose our model-fitting approach of trans-
forming clustering into prediction and describe two new prediction algorithms.
Section 4 describes and discusses the results of our experiments with association
search and susceptibility prediction on three real data sets.

2 Disease Association Search

In this section we formally describe the search of statistically significant disease-
associated multi-SNP combinations. We then formulate the corresponding op-
timization problem, discuss its complexity, describe combinatorial search intro-
duced in [6] and propose a fast heuristic, so called complementary greedy search.

The typical case/control or cohort study results in a sample population S con-
sisting of n individuals represented by values of m SNPs and the disease status.
Since it is expensive to obtain individual chromosomes, each SNP value attains
one of three values 0, 1 or 2, where 0’s and 1’s denote homozygous sites with
major allele and minor allele, respectively, and 2’s stand for heterozygous sites.
SNPs with more than 2 alleles are rare and can be conventionally represented
as biallelic. Thus the sample S is an (0, 1, 2)-valued n× (m + 1)-matrix, where
each row corresponds to an individual, each column corresponds to a SNP ex-
cept last column corresponding to the disease status (0 stands for disease and 1
stands for non-disease). Let S0 and S1 be the subsets of rows with non-disease
and disease status, respectively. For simplicity, we assume that there are no two
rows identical in all SNP columns.

Combinatorial Methods for Disease Association Search 289

Risk and resistance factors representing gene variation interaction can be de-
fined in terms of SNPs as follows. A multi-SNP combination (MSC) C is a subset
of SNP-columns of S (denoted snp(C)) and the values of these SNPs, 0, 1, or
2.1 The subset of individuals-rows of S whose restriction on columns of snp(C)
coincide with values of C is denoted cluster(C). A subset of individuals is called
a cluster if it coincides with cluster(C) for a certain MSC C. For example, if S
is represented by an identity matrix I5, then rows 3, 4, and 5 form a cluster for
MSC C with snp(C) = {1, 2} and both values equal to 0. Obviously, a subset
X of rows of S may not form a cluster, but it always can be represented as
a union of clusters, e.g., as a union of trivial clusters containing its individual
rows. Let h(C) = cluster(C) ∩ S0 be the set of non-diseased individuals and
d(C) = cluster(C) ∩ S1 be the set of diseased individuals in cluster(C).

The association of an MSC C with the disease status can be measured with
the following parameters (h = |h(C)|, d = |d(C)|, H = |S0|, D = |S1|):

– odds ratio OR = d·(H−h)
h·(D−d) (for case-control studies)

– relative risk RR = d·(H+D−h−d)
(D−d)(h+d) (for cohort studies)

– positive predictive value PPV = d
h+d (for susceptibility prediction)

– p-value of the partition of the cluster into diseased and non-diseased:

p =
d∑

k=0

(
h + d

k

)(
D

H + D

)k (
H

H + D

)h+d−k

Since MSCs are searched among all SNPs, the computed p-value requires adjust-
ment for multiple testing which can be done with simple but overly pessimistic
Bonferroni correction or computationally extensive but more accurate random-
ization method.

General disease association searches for all MSCs with one of the parameters
above (or below) a certain threshold. The common formulation is to find all
MSCs with adjusted p-value below 0.05.

The exhaustive search (ES) checks all 1-SNP, 2-SNP, ..., m-SNP combinations
has runtime O(n3m) making it infeasible even for small numbers of SNPs m. One
either should reduce the depth (number of simultaneously interacting SNPs) or
reduce m by extracting informative SNPs from which one can reconstruct all
other SNPs. The multiple linear regression based tagging method of [11] has
been used in [6]. They choose maximum number of index SNPs that can be
handled by ES in a reasonable computational time.

It has been also suggested a combinatorial search (CS) which avoids insignif-
icant MSCs or clusters without loosing significant ones. CS searches only for
closed MSCs, where closure is defined as follows. The closure C̄ of MSC C is
an MSC with minimum non-diseased elements h(C̄) and the same diseased el-
ements d(C̄) = d(C). C̄ can be easily found by incorporating into snp(C) all
1 In this paper we restrict ourselves to 0,1, or 2, while in general, the values of MSC

can also be negations 0̄, 1̄ or 2̄, where ī means that MSC is required to have value
unequal to i.

290 D. Brinza and A. Zelikovsky

SNP with common values among all diseased individuals in C. Also CS disre-
gards clusters with small number of diseased individuals since they cannot have
significant subclusters. CS has been shown much faster than ES and capable of
finding more significant MSCs than ES [6].

Here we suggest to consider also optimization formulation corresponding to
the general association search problem, e.g., find MSC with the minimum ad-
justed p-value. In particular, we focus on maximization of PPV. Obviously, the
MSC with maximum PPV should not contain non-diseased individuals in its
cluster and the problem can be formulated as follows:

Maximum Non-diseased-Free Cluster Problem. (MNFCP) Find a cluster
C which does not contain non-diseased individuals and has the maximum number
of diseased individuals.

It is not difficult to see that this problem includes the maximum independent
set problem. Indeed, given a graph G = (V, E), for each vertex v we put into
correspondence a diseased individual v′ and for each edge e = (u, v) we put into
correspondence a non-diseased individual e′ such that any cluster containing
u′ and v′ should also contain e′ (e.g., u′, v′, and e′ are identical except one
SNP where they have 3 different values 0,1, and 2). Obviously, the maximum
independent set of G corresponds to the maximum non-diseased-free cluster and
vice versa. Thus one cannot reasonably approximate MNFCP in polynomial time
for an arbitrary sample S.

On the other hand, the sample S is not “arbitrary”—it comes from a certain
disease association study. Therefore, we may have hope that simple heuristics
(particularly greedy algorithms) can perform much better than in the worst
arbitrary case. For example in graphs, instead of the maximum independent set
we can search for its complement, the minimum vertex cover—repeat picking and
removing vertices of maximum degree until no edges left. In our case we minimize
the relative cost of covering (or removal) of non-diseased individuals, which is
the number of removed diseased individuals. The corresponding heuristic for
MNFCP is the following

Complementary Greedy Search
C ← S
Repeat until h(C) > 0

For each 1-SNP combination X = (s, i), where s is a SNP and i ∈ {0, 1, 2}
find d̄ = d(C)− d(C ∩X)) and h̄ = h(C)− h(C ∩X)

Find 1-SNP combination X minimizing d̄/h̄
C ← C ∩X

Similarly to the maximum non-diseased-free cluster corresponding to the most
expressed risk factor, we can also search for the maximum diseased-free cluster
corresponding to the most expressed resistance factor.

Our experiments with three real data sets (see Section 3) show that the
complimentary greedy search can find non-trivially large non-diseased-free and
diseased-free clusters.

Combinatorial Methods for Disease Association Search 291

3 Disease Susceptibility Prediction

In this section we show how to apply association search methods to disease sus-
ceptibility prediction. We first formulate the problem and discuss cross-validation
schemes. We then give a relevant formulation of the optimum clustering problem
and propose a general method how any clustering algorithm can be transformed
into a prediction algorithm. We conclude with description of two proposed asso-
ciation search-based prediction algorithms.

We start with the formal description of the problem.
Disease Susceptibility Prediction Problem. Given a sample population
S (a training set) and one more individual t /∈ S with the known SNPs but
unknown disease status (testing individual), find (predict) the unknown disease
status.

From our point of view, the main drawback of such problem formulation that
it cannot be considered as a standard optimization formulation. One cannot
directly measure the quality of a prediction algorithm from the given input since
it does not contain the predicted status.

A standard way to measure the quality of prediction algorithms is to apply a
cross-validation scheme. In the leave-one-out cross-validation, the disease status
of each genotype in the population sample is predicted while the rest of the data
is regarded as the training set. There are many types of leave-many-out cross-
validations where the testing set contains much larger subset of the original
sample. Any cross-validation scheme produces a confusion table—see Table 1.
The main objective is to maximize prediction accuracy while all other parameters
also reflect the quality of the algorithm.

Table 1. Confusion table

True disease status
Diseased Non-diseased

predicted diseased True Positive False Positive Positive Prediction Value
TP FP PPV= TP/(TP+FP)

predicted False Negative True Negative Negative Prediction Value
non-diseased FN TN NPV= TN/(FN+TN)

Sensitivity Specificity Accuracy
TP/(TP+FN) TN/(FP+ TN) (TP+TN)/(TP+FP+FN+TN)

In this paper we propose to avoid cross-validation and instead suggest a differ-
ent objective by restricting the ways how prediction can be made. It is reasonable
to require that every prediction algorithm should be able to predict the status
inside the sample. Therefore, such algorithms is supposed to be able to partition
the sample into subsets based only on the values of SNPs, i.e., partition of S
into clusters defined by MSCs. Of course, a trivial clustering where each indi-
vidual forms its own cluster can always perfectly distinguish between diseased
and non-diseased individuals. On the other hand such clustering carries mini-
mum information. Ideally, there should be two clusters perfectly distinguishing

292 D. Brinza and A. Zelikovsky

diseased from non-diseased individuals. There is a trade-off between number
of clusters and the information carried by clustering which results in trade-off
between number of errors (i.e., incorrectly clustered individuals) and informa-
tiveness which we propose to measure by information entropy instead of number
of clusters.
Optimum Disease Clustering Problem. Given a population sample S, find
a partition P of S into clusters S = S1 ∪ . . . ∪ Sk, with disease status 0 or 1
assigned to each cluster Si, minimizing

entropy(P) = −
k∑

i=1

|Si|
|S| ln

|Si|
|S|

for a given bound on the number of individuals who are assigned incorrect status
in clusters of the partition P , error(P) < α · |P|.

The above optimization formulation is obviously NP-hard but has a huge ad-
vantage over the prediction formulation that it does not rely on cross-validation
and can be studied with combinatorial optimization techniques. Still, in order
to make the resulted clustering algorithm useful, one needs to find a way ho to
apply it to the original prediction problem.

Here we propose the following general approach. Assuming that the cluster-
ing algorithm indeed distinguishes real causes of the disease, one may expect
that the major reason for erroneous status assignment is in biases and lack of
sampling. Then a plausible assumption is that a larger sample would lead to a
lesser proportion of clustering errors. This implies the following transformation
of clustering algorithm into prediction algorithm:
Clustering-based Model-Fitting Prediction Algorithm
Set disease status 0 for the testing individual t and

Find the optimum (or approximate) clustering P0 of S ∪ {t}
Set disease status 1 for the testing individual t and

Find the optimum (or approximate) clustering P1 of S ∪ {t}
Find which of two clusterings P0 or P1 better fits model, and

accordingly predict status of t,

status(t) = arg min
i=0,1

error(Pi)

We propose two clustering algorithms based the combinatorial and comple-
mentary greedy association searches. Our clustering finds for each individual
an MSC or its cluster that contains it and is the most associated according
to a certain characteristic (e.g., RR, PPV or lowest p-value)) with disease-
susceptibility and disease-resistance. Then each individual is attributed the ra-
tio between these two characteristic values—maximum disease-susceptibility and
disease-resistance. Although the resulted partition of the training set S is easy
to find, it is still necessary to decide which threshold between diseased and
non-diseased clusters should be used. We choose the threshold minimizing the
clustering error.

Combinatorial Methods for Disease Association Search 293

Our combinatorial search-based prediction algorithm (CSP) exploits combina-
torial search to find the most-associated cluster for each individual. Empirically,
the best association characteristic is found to be the relative risk rate RR. Our
complimentary greedy search-based prediction algorithm (CGSP) exploits com-
plimentary greedy search to find the most-associated cluster for each individual.
Empirically, the best association characteristic is found to be the positive predic-
tive value PPV. The leave-one-out cross-validation (see Section 4) show signifi-
cant advantage of CSP and GCSP over previously known prediction algorithms
for all considered real datasets.

4 Results and Discussion

In this section we discuss the results of methods for searching disease-associated
multi-SNP combinations and susceptibility prediction on real datasets. We first
describe three real datasets, then overview search and prediction methods and
conclude with description and discussion of their performance.
Data Sets. The data set Daly et al [3] is derived from the 616 kilobase region
of human Chromosome 5q31 that may contain a genetic variant responsible for
Crohn’s disease by genotyping 103 SNPs for 129 trios. All offspring belong to
the case population, while almost all parents belong to the control population.
In entire data, there are 144 case and 243 control individuals.

The data set of Ueda et al [10] are sequenced from 330kb of human DNA
containing gene CD28, CTLA4 and ICONS which are proved related to autoim-
mune disorder. A total of 108 SNPs were genotyped in 384 cases of autoimmune
disorder and 652 controls.

The tick-borne encephalitis virus-induced dataset of Barkash et al [4] con-
sists of 41 SNPs genotyped from DNA of 21 patients with severe tick-borne
encephalitis virus-induced disease and 54 patients with mild disease.

The three datasets have been phased using 2SNP software [5]. The missing
data (16% in [3] and 10% in [10]) have been imputed in genotypes from the
resulted haplotypes. We have also created corresponding haplotype datasets in
which each individual is represented by a haplotype with the disease status
inherited from the corresponding individual genotype.
Association Search Methods. We have compared the following 4 methods
for search disease-associated multi-SNP combinations.

– Indexed Exhaustive Search (IES(30)): exhaustive search on the indexed
datasets obtained by extracting 30 indexed SNPs with MLR based tagging
method [11];

– Indexed Combinatorial Search (ICS(30)): combinatorial search on the in-
dexed datasets obtained by extracting 30 indexed SNPs with MLR based
tagging method [11].

– Complementary Greedy Search (CGS) (see Section 2)

The quality of searching methods is compared by the sizes of diseased-free
and non-diseased-free clusters as well as their statistical significance Table 2. All

294 D. Brinza and A. Zelikovsky

Table 2. Comparison of three methods for searching the disease-associated and disease-
resistant multi-SNPs combinations with the largest PPV. The starred values refer to
results of the runtime-constrained exhaustive search.

Search max PPV risk factor max PPV resistance factor
Dataset of method case control unadjusted run- case control unadjusted run-

freq. freq. p-value time freq. freq. p-value time
sec. sec.

Crohn’s IES(30) 0.09∗ 0.00 8.7×10−7 21530 0.00 0.07∗ 3.7×10−4 869
disease ICS(30) 0.11 0.00 3.1×10−9 7360 0.00 0.09 5.7×10−5 708

[3] CGS 0.06 0.00 1.4×10−4 0.1 0.00 0.10 2.2×10−5 0.1

autoimmune IES(30) 0.04∗ 0.00 2.5×10−8 7633 0.00 0.04∗ 4.0×10−6 39
disorder ICS(30) 0.04 0.00 2.5×10−8 5422 0.00 0.04 4.0×10−6 36

[10] CGS 0.02 0.00 3.4×10−4 0.1 0.00 0.04 2.5×10−5 0.1

tick-borne ES 0.29∗ 0.00 4.8×10−4 820 0.00 0.39 1.0×10−3 567
encephalitis CS 0.33 0.00 1.3×10−4 780 0.00 0.39 1.0×10−3 1

[4] CGS 0.19 0.00 6.1×10−3 0.1 0.00 0.32 3.8×10−3 0.1

experiments were ran on Processor Pentium 4 3.2Ghz, RAM 2Gb, OS Linux—
the runtime is given in the last column of Table 2.

Prediction Methods. We compare the proposed prediction algorithms based
on combinatorial and complimentary greedy searches (see Section 3) with the
following three prediction methods. We have chosen these three methods out of
6 compared in [16] and 2 other methods from [15] since they have best prediction
results for two real data sets [3] and [10].

Support Vector Machine (SVM). Support Vector Machine (SVM) is a generation
learning system based on recent advances in statistical learning theory. SVMs
deliver state-of-the-art performance in real-world applications and have been
used in case/control studies [18,22]. We use SVM-light [13] with the radial basis
function with γ = 0.5.

Random Forest (RF). A random forest is a collection of CART-like trees following
specific rules for tree growing, tree combination, self-testing, and post-processing.
We use Leo Breiman and Adele Cutler’s original implementation of RF version
5.1 [14]. RF tries to perform regression to generate the suitable model and using
bootstrapping produces random trees.

LP-based Prediction Algorithm (LP). This method is based on a graph X =
{H, G}, where the vertices H correspond to distinct haplotypes and the edges
G correspond to genotypes connecting its two haplotypes. The density of X is
increased by dropping SNPs which do not collapse edges with opposite status.
Solving a linear program it assigns weights to haplotypes such that for any non-
diseased genotype the sum of weights of its haploptypes is less than 0.5 and
greater than 0.5 otherwise. We maximize the sum of absolute values of weights
over all genotypes. The status of testing genotype is predicted as sum of its
endpoints [15].

Combinatorial Methods for Disease Association Search 295

Table 3. Leave-one-out cross validation results of four prediction methods for three real
data sets. Results of combinatorial search-based prediction (CSP) and complimentary
greedy search-based prediction (CGSP) are given when 20, 30, or all SNPs are chosen
as informative SNPs.

Prediction Methods
Dataset Quality SVM LP RF CGSP CSP

measure 20 30 all 20 30 all
sensitivity 20.8 37.5 34.0 28.5 77.1 61.1 68.9 80.0 -

Crohn’s specificity 88.8 88.5 85.2 90.9 74.1 98.0 79.2 89.7 -
disease accuracy 63.6 69.5 66.1 68.2 75.5 84.3 75.2 84.1 -

[3] runtime (h) 3.0 4.0 0.08 0.01 0.17 9.0 611 1189 ∞
sensitivity 14.3 7.1 18.0 29.4 32.3 51.3 65.9 79.0 -

autoimmune specificity 88.2 91.2 92.8 90.7 89.0 94.7 80.0 89.1 -
disorder accuracy 60.9 61.3 65.1 68.0 68.2 82.5 74.3 83.2 -

[10] runtime (h) 7.0 10.0 0.20 0.01 0.32 25.6 9175 17400 ∞
sensitivity 11.4 16.8 12.7 61.9 52.4 66.7 87.5 80.2 76.2

tick-borne specificity 93.2 92.0 95.0 96.2 98.1 94.4 91.2 92.4 94.4
encephalitis accuracy 72.2 75.5 74.2 81.3 82.7 84.0 88.1 88.5 89.3

[4] runtime (h) 0.2 0.08 0.01 0.01 0.01 0.02 1.8 6.3 8.5

Table 3 reports comparison of all considered prediction methods. Their quality
is measured by sensitivity, specificity, accuracy and runtime. Since prediction
accuracy is the most important quality measure, it is given in bold. Figure
1 shows the receiver operating characteristics (ROC) representing the trade-
off between specificity and sensitivity. ROC is computed for all five prediction
methods applied to the tick-borne encephalitis data [4].
Discussion. The comparison of three association searches (see Table 2) shows
that combinatorial search significantly outperforms the exhaustive search. It al-
ways finds the same or larger cluster than exhaustive search and is significantly
faster. The search method runtime is a critical in deciding whether it can be
used in in clustering and susceptibility prediction. Note that the both exhaus-
tive and combinatorial searches are prohibitively slow on the first two datasets
and, therefore, we reduce these datasets to 30 index SNPs while complementary
greedy search is fast enough to handle the complete datasets. This resulted in
improvement of the complementary greedy over combinatorial search for the first
dataset when search for the largest diseased-free cluster - after compression to
30 tags the best cluster simply disappears.

The comparison of the proposed association search-based and previously
known susceptibility prediction algorithms (see Table 3) shows a considerable ad-
vantage of new methods. Indeed, for the first dataset the best proposed method
(CGSP) beats the previously best method (LP) in prediction accuracy 84.3% to
69.5%. For the second dataset, the respective numbers are 83.2% (CSP(30)) to
65.1% (RF), and for the third dataset, they are 89.3% (CSP) to 75.5% (LP).
It is important that this lead is the result of much higher sensitivity of new
methods—the specificity is almost always very high since all prediction methods
tend to be biased toward non-diseased status. The ROC curve also illustrates

296 D. Brinza and A. Zelikovsky

Fig. 1. The receiver operating characteristics (ROC) for the five prediction methods
applied to the tick-borne encephalitis data [4]. All SNPs are considered tags for CGSP
and CSP.

advantage of CSP and GCSP over previous methods. Indeed the area under ROC
curve for CSP is 0.89, for SVM is 0.52 compared with random guessing area of
0.5. Another important issue is how proposed prediction algorithms tolerate
data compression. The prediction accuracy (especially sensitivity) is increases
for CGSP when more SNPs are made available—e.g., for the second dataset, the
sensitivity grows from 29.4% (20 SNPs) to 32.3% (30 SNPs) to 65.9% (all 108
SNPs).

We conclude that the indexing approach, the combinatorial and complemen-
tary greedy search methods, and association search-based based susceptibility
prediction algorithms are very promising techniques that can possibly help (i) to
discover gene interactions causing common diseases and (ii) to create diagnostic
tools for genetic epidemiology of common diseases.

References

1. Affymetrix (2005) http://www.affymetrix.com/products/arrays/.
2. International HapMap Consortium. (2003) The International HapMap Project.

Nature, 426, 789–796, http://www.hapmap.org.
3. Daly, M., Rioux, J., Schaffner, S., Hudson, T. and Lander, E. (2001) High resolution

haplotype structure in the human genome. Nature Genetics, 29, 229–232.
4. Barkhash, A., Perelygin, A., Brinza, D., Pilipenko, P., Bogdanova, YU., Ro-

maschenko, A., Voevoda, M. and Brinton, M. (2006) Genetic Resistance to
Flaviviruses, 5th Conf. on Bioinformatics of Genome Regulation and Structure
(BGRS’06), to appear.

5. Brinza, D. and Zelikovsky, A. (2006) 2SNP: Scalable Phasing Based on 2-SNP
Haplotypes, Bioinformatics, 22(3), 371–373.

Combinatorial Methods for Disease Association Search 297

6. Brinza, D., He, J. and Zelikovsky, A. (2006) Combinatorial Search Methods for
Multi-SNP Disease Association, Proc. IEEE Conf. on Engineering in Medicine and
Biology (EMBC’06), September 2006, to appear.

7. Clark AG. (2003) Finding Genes Underlying Risk of Complex Disease by Linkage
Disequilibrium Mapping, Curr. Opin. Genet. Dev., 13(3), 296–302.

8. A.G.Clark et al (2005). Determinants of the success of whole-genome association
testing, Genome Res., 15, 1463–1467.

9. Stephens, M., Smith, N.J., and Donnelly, P. (2001) A New Statistical Method for
Haplotype Reconstruction from Population Data, The American J. of Human
Genetics, 68, 978-998.

10. Ueda, H., Howson, J.M.M., Esposito, L. et al. (2003) Association of the T Cell
Regulatory Gene CTLA4 with Susceptibility to Autoimmune Disease, Nature, 423,
506–511.

11. He, J. and Zelikovsky, A. (2006) Tag SNP Selection Based on Multivariate Linear
Regression, Proc. Int’l Conf. on Computational Science (ICCS’06), LNCS 3992,
750–757.

12. Marchini, J., Donnelley, P. and Cardon, L.R, (2005) Genome-wide strategies
for detecting multiple loci that influence complex diseases, Nature Genetics 37,
413–417.

13. Joachims, T. http://svmlight.joachims.org/
14. Breiman, L. and Cutler, A. http://www.stat.berkeley.edu/users/breiman/RF
15. Mao, W., He, J., Brinza, D. and Zelikovsky, A. (2005) A Combinatorial Method

for Predicting Genetic Susceptibility to Complex Diseases, Proc. IEEE Conf. on
Engineering In Medicine and Biology (EMBC’05), pp. 224–227.

16. Mao, W., Brinza, D., Hundewale, N., Gremalschi, S. and Zelikovsky, A. (2006)
Genotype Susceptibility and Integrated Risk Factors for Complex Diseases, Proc.
IEEE Conf. on Granular Computing (GRC 2006), pp. 754–757.

17. Kimmel, G. and Shamir R. (2005) A Block-Free Hidden Markov Model for Geno-
types and Its Application to Disease Association, J. of Computational Biology
12(10): 1243–1260.

18. Listgarten, J., Damaraju, S., Poulin B., Cook, L., Dufour, J., Driga, A., Mackey, J.,
Wishart, D., Greiner,R., and Zanke, B. (2004) Predictive Models for Breast Cancer
Susceptibility from Multiple Single Nucleotide Polymorphisms, Clinical Cancer
Research 10: 2725–2737.

19. Nelson, M.R., Kardia, S.L., Ferrell, R.E., and Sing, C.F. (2001) A combinatorial
partitioning method to identify multilocus genotypic partitions that predict quan-
titative trait variation, Genome Res., 11: 458–470.

20. Tahri-Daizadeh, N., Tregouet, D. A., Nicaud, V., Manuel, N., Cambien, F., Tiret L.
(2003) Automated detection of informative combined effects in genetic association
studies of complex traits, Genome Res., 13: 1952–1960.

21. Tomita, Y., Yokota, M. and Honda, H. (2005) Classification method for prediction
of multifactorial disease development using interaction between genetic and envi-
ronmental factors, IEEE Comput. Systems Bioinformatics Conf. CSB’05, poster.

22. Waddell, M., Page,D., Zhan, F., Barlogie, B., and Shaughnessy, J. (2005) Predicting
Cancer Susceptibility from SingleNucleotide Polymorphism Data: A Case Study in
Multiple Myeloma, Proc. BIOKDD’05.

Integer Linear Programs for Discovering

Approximate Gene Clusters

Sven Rahmann1,2 and Gunnar W. Klau3,4

1 Algorithms and Statistics for Systems Biology group, Genome Informatics,
Technische Fakultät, Bielefeld University, D-33594 Bielefeld, Germany

Sven.Rahmann@cebitec.uni-bielefeld.de
2 International NRW Graduate School in Bioinformatics and Genome Research

3 Mathematics in Life Sciences group, Dept. of Mathematics and Computer Science,
Free University Berlin, D-14195 Berlin, Germany

gunnar@math.fu-berlin.de
4 DFG Research Center Matheon “Mathematics for key technologies”, Berlin

Abstract. We contribute to the discussion about the concept of approx-
imate conserved gene clusters by presenting a class of definitions that (1)
can be written as integer linear programs (ILPs) and (2) allow several
variations that include existing definitions such as common intervals, r-
windows, and max-gap clusters or gene teams. While the ILP formulation
does not directly lead to optimal algorithms, it provides unprecedented
generality and is competitive in practice for those cases where efficient
algorithms are known. It allows for the first time a non-heuristic study of
large approximate clusters in several genomes. Source code and datasets
are available at http://gi.cebitec.uni-bielefeld.de/assb.

1 Introduction

Advances in genome sequencing projects allow to increasingly use methods from
comparative genomics to infer gene functions and roles. One approach is based
on the following idea: During evolution, genomes rearrange, i.e., whole blocks
are cut out, possibly reversed, and moved to different spots in the genome. The
rearranged genome will only be fixed in the population if it is viable and its fitness
is not significantly lower than that of the presently dominant genome. This is the
case only if those genes remain physically close in the genome that need to be
expressed together because they act in the same pathway or share an important
function. For this reason, conserved gene proximity over long evolutionary times
is an indication for a functional relation between the corresponding genes [1].
The above ideas give rise to the problem of finding approximate conserved gene
clusters, which we loosely define as sets of genes that occur in close proximity in
each genome under consideration.

We assume that genes are represented by integers in such a way that paralo-
gous and orthologous genes receive the same number. Homology detection is a
delicate procedure, so we must assume that our representation contains errors.
As a consequence, we need an error-tolerant formalization of the cluster concept.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 298–309, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Integer Linear Programs for Discovering Approximate Gene Clusters 299

Different ways to formally define gene clusters have been discussed recently;
a survey of alternatives has appeared in [2]. Difficulties include:

1. The problem has been attacked from two sides. One philosophy is to specify an
algorithm and constructively define the algorithm’s results as conserved gene
clusters.Thedrawbacks of this approach are that it is unclear how such an algo-
rithm maps to the biological reality, and that statistical analysis of the results
becomes difficult. The other philosophy is to provide a formal specification of
what constitutes a gene cluster (modeling step) and then design an algorithm
that finds all clusters that satisfy the specification (problem solving step).

2. It is not easy to formally specify what we are looking for. Should we choose a
narrow definition at the risk of missing biologically interesting gene sets, or
a wide definition and browse through many biologically uninteresting sets?

We think that it is preferable to use separate modeling and solving steps. This
allows us to first focus on tuning the model for biological relevance and only
then worry about efficient algorithms. Therefore we propose a framework for
modeling the approximate gene cluster discovery problem (AGCDP), as defined
in Problem 1 below, as well as many variants, as an integer linear program (ILP;
see [3] for a general introduction).

Contribution and related work. The innovative feature of our approach is its ver-
satility. We are aware that for certain special cases of our ILP formulation, special-
purpose algorithms already exist. Using them would solve the corresponding
problem more efficiently than using a general ILP solver. However, our approach
has the advantage that the objective function and constraints can be easily mod-
ified without designing and implementing a new algorithm. The ILP formulation
thus allows to test quickly whether a model makes sense from a biological point of
view. Incidentally, it also performswell in practice on the known easy formulations.
Existing definitions that canbe modeled in our framework include (exact) common
intervals in permutations [4], (exact) common intervals in arbitrary sequences [5],
gene teams or max-gap-clusters [6,7], and r-windows [8], for example.

The paper is structured as follows. Section 2 provides our basic definition of
gene clusters and related quantities. Section 3 shows how to formulate the result-
ing discovery problem as an ILP. Several variations and extensions of the basic
model are presented together with the necessary ILP modifications in Section 4,
demonstrating the flexibility of our approach. We present computational results
in Section 5 and a concluding discussion in Section 6.

2 Basic Problem Specification

Genes and gene sets. Genes are represented by positive integers. If the same
integer occurs more than once in the same genome, the genes are paralogs of
each other. If the same integer occurs in different genomes, the genes may be
orthologs or paralogs. There is also a special gene denoted by 0 that represents
a different gene at every occurrence and whose purpose it is to model any gene

300 S. Rahmann and G.W. Klau

for which no homolog exists in the dataset. The gene universe or gene pool is
denoted by U := {0, 1, . . . , N} for some integer N ≥ 1. We are looking for a
subset of the gene pool, without the special gene, i.e., X ⊂ U with 0 /∈ X , called
the reference gene set, whose genes occur in close proximity in each genome.

Genomes. A genome is modeled as a sequence of genes; we do not consider
intergenic distances. We emphasize that a genome need not be a permutation of
the gene pool; each gene (family) can occur zero times, once, or more than once in
each genome. Restricting genomes to permutations sometimes allows remarkably
efficient algorithms (e.g., [6,4]), but also restricts the modeling power too much
for our purposes. To specify the basic problem, we assume that genomes consist
of a single linear chromosome. The cases of several chromosomes and of a circular
chromosome are discussed in Section 4. We consider m genomes; the length of
the i-th genome is ni: gi = (gi

1, . . . , g
i
ni

), i = 1, . . . , m. In the basic model, we look
for an approximate occurrence of X in every genome; in Section 4, we describe
how to relax this objective.

Genomic intervals and their gene contents. A linear interval in a genome g =
(g1, . . . , gn) is an index set J , which is either the empty interval J = ∅, or
J = {j, j + 1, . . . , k}, written as J = [j : k], with 1 ≤ j ≤ k ≤ n. The gene
content of J = [j : k] in g is the set GJ := {gj, . . . , gk}. Note that GJ is a set,
and neither a sequence nor a multiset. The length of J = [j : k] is |J | = k−j+1.
The gene content of J = ∅ is G∅ = ∅, and its length is |J | = |∅| = 0.

Objective. The goal is to find a gene set X ⊂ U without the special gene (0 /∈ X),
and a linear interval Ji for each genome i ∈ {1, . . . , m}, such that, informally
X ≈ Gi

Ji
for all i, where Gi

Ji
denotes the gene content of Ji in the i-th genome.

The agreement of X and the gene content Gi
Ji

is measured by the number
|Gi

Ji
\X | of genes additionally found in the interval although they are not part

of X (“additional genes”), and by the number |X \ Gi
Ji
| of X-genes not found

in the interval (“missing genes”).
Since gene clusters of different sizes behave differently, it makes sense to pa-

rameterize the problem by specifying the size of the reference gene set |X | by
enforcing |X | = D or |X | ≥ D, or a range D− ≤ |X | ≤ D+.

Finding an optimal gene cluster. There are several ways to cast the above cri-
teria into an optimization problem: We can let them contribute to the objective
function or select thresholds and use them as hard constraints, or both. We start
with a formulation with as few hard constraints as possible. A first goal is to
find an optimal gene cluster (in terms of the cost function defined below).

Problem 1 (Basic approximate gene cluster discovery problem (AGCDP)). Given
– the gene pool U = {0, 1, . . . , N},
– m genomes (gi)i=1...m, where gi = (gi

1, . . . , g
i
ni

),
– a size range [D−, D+] for the reference gene set (possibly D− = D+ =: D),
– integer weights w− ≥ 0 and w+ ≥ 0 that specify the respective cost for each

missed and additional gene in an interval,

Integer Linear Programs for Discovering Approximate Gene Clusters 301

find X ⊂ U with 0 /∈ X and D− ≤ |X | ≤ D+, and a linear interval Ji for each
genome in order to minimize

c := c(X, (Ji)) =
m∑

i=1

[
w− · |X \Gi

Ji
|+ w+ · |Gi

Ji
\X |

]
.

In Section 3 we show how to write this problem as an ILP; the complexity
is discussed in Section 6. In practice, distinct clusters X with the same optimal
cost c∗ or cost close to c∗ may exist, and it is not sufficient to find a single
arbitrary optimal one.

Finding all interesting gene clusters. Once we know the optimal cost c∗, we
introduce a constraint c(X, (Ji)) ≤ (1 + γ) · c∗ with a tolerance parameter γ > 0
and then enumerate the feasible points (X, J, c) with this additional constraint.
The set of feasible points may be redundant in the sense that several solutions
lead to similar X , or to different intervals Ji with the same gene content, etc.
Therefore we are mainly interested in sufficiently distinct X . After finding one
reference gene set X∗, we can force a distinct solution by adding a new constraint
|XΔX∗| ≥ T for a positive threshold T . Here Δ denotes symmetric set difference.

As noted above, the problem is formulated with specific bounds for the refer-
ence set size: |X | ∈ [D−, D+] or |X | = D. This is useful if we already have an
idea of the gene cluster size that we want to discover. Otherwise, we can solve the
problem for several values of D. For technical reasons, further discussed below,
it is not recommended to choose a large range [D−, D+].

3 Integer Linear Programming Formulation

To cast the AGCDP into an ILP framework, we need to represent the reference
gene set X , the intervals Ji, and the gene contents Gi

Ji
, as well as several auxiliary

variables. Table 1 gives an overview.
We model X as a binary vector x = (x0, . . . , xN) ∈ {0, 1}N+1, where we set

xq = 1 if and only if q ∈ X . We demand x0 = 0 and D− ≤
∑

q xq ≤ D+.
To model the selected interval interval Ji in genome i, we use binary indicator

vectors zi = (zi
j)j=1,...,ni . A linear interval in genome i is characterized by the

fact that the ones in zi occur consecutively. We enforce this property by intro-
ducing auxiliary binary vectors +zi = (+zi

1, . . . ,
+zi

ni
) and −zi = (−zi

1, . . . ,
−zi

ni
)

that model increments and decrements, respectively, in zi.
We thus set zi

1 = +zi
1−−zi

1, and for 2 ≤ j ≤ ni: zi
j = zi

j−1++zi
j−−zi

j. We forbid
a simultaneous increment and decrement at each position: +zi

j + −zi
j ≤ 1 for all

j = 1, . . . , ni; and we allow at most one increment and decrement:
∑ni

j=1
+zi

j ≤ 1
and

∑ni

j=1
−zi

j ≤ 1. Recall that all three vectors zi, +zi, and −zi are elements
of {0, 1}ni. It is easy to see that each linear interval can be written in a unique
way with this parameterization: For the empty interval, use zero vectors for +z
and −z. For the interval [j : k] with 1 ≤ j ≤ k < ni, set +zi

j = 1 and −zi
k+1 = 1.

If k = ni, then −z is the zero vector.

302 S. Rahmann and G.W. Klau

Table 1. Overview of variables and expressions representing objects and quantities in
the basic ILP formulation. All variables are binary.

Main objects ILP variables (binary)

reference gene set X x = (xq)q=0,...,N

interval Ji in i-th genome zi = (zi
j)j=1,...,ni , i = 1, . . . , m

gene content Gi
Ji

of Ji in gi χi = (χi
q)q=0,...,N , i = 1, . . . , m

Auxiliary objects ILP variables (binary)

increments in zi +zi = (+zi
j)j=1,...,ni , i = 1, . . . , m

decrements in zi −zi = (−zi
j)j=1,...,ni , i = 1, . . . , m

intersection X ∩ Gi
Ji

ιi = (ιi
q)q=0,...,N , i = 1, . . . , m

Target quantities ILP expression

#{missing genes in gi}: |X \ Gi
Ji
| N

q=0 xq − ιi
q

#{additional genes in gi}: |Gi
Ji

\ X| N
q=0 χi

q − ιi
q

The gene content Gi
Ji

in genome i is modeled by another indicator vector
χi = (χi

q)q=0,...,N : If some position j is covered by the chosen interval Ji, the
corresponding gene must be included in the gene content; thus χi

gi
j
≥ zi

j for

all j = 1, . . . , ni (recall that gi
j is constant). On the other hand, if some gene

q ∈ {1, . . . , N} is not covered by Ji, it must not be included: χi
q ≤

∑
j:gi

j=q zi
j

for all q ∈ {0, . . . , N}. For each genome i, the above two families of inequalities
map the selected intervals exactly to the selected gene contents. Note that if
gene q does never appear in genome i, the sum inequality yields χi

q = 0, as
desired.

To model the target function, we need the intersection between X and the
selected gene content Gi

Ji
in the i-th genome. We define another family of indi-

cator vectors for i = 1, . . . , m: ιi = (ιiq)q=0,...,N that we force to model the set
intersection X ∩Gi

Ji
via the inequalities ιiq ≤ xq, ιiq ≤ χi

q, and ιiq ≥ xq + χi
q − 1.

Then the terms of the target function are

|X \Gi
Ji
| =

N∑
q=0

(xq − ιiq); |Gi
Ji
\X | =

N∑
q=0

(χi
q − ιiq).

Table 2 presents the whole basic formulation at a glance. After the above
discussion, we may state

Theorem 1. The ILP in Table 2 correctly represents Problem 1 (Basic AGCDP).

4 Extensions and Variations

Constraining and varying the objective function. The basic ILP in Table 2 always
has a feasible solution; an upper bound of the cost is easily obtained by taking
any set of size D− for X , empty intervals in all genomes, and paying the cost of

Integer Linear Programs for Discovering Approximate Gene Clusters 303

Table 2. ILP formulation for the basic AGCDP; see Table 1 for variables

Given integers N ≥ 1, m ≥ 2, (ni)i=1,...,m with ni ≥ 1, (gi
j)i=1,...,m; j=1,...,ni from

{0, 1, . . . , N}, 1 ≤ D− ≤ D+ ≤ N , w− ≥ 0 and w+ ≥ 0,

minimize
m

i=1

w− ·
N

q=0

(xq − ιi
q) + w+ ·

M

q=0

(χi
q − ιi

q) subject to

xq ∈ {0, 1} (q = 0, 1, . . . , N)
x0 = 0

N
q=0 xq ≥ D−
N
q=0 xq ≤ D+

zi
j ,

+zi
j ,

−zi
j ∈ {0, 1} (i = 1, . . . , m, , j = 1, . . . , ni)

zi
1 = +zi

1 − −zi
1 (i = 1, . . . , m)

zi
j = zi

j−1 + +zi
j − −zi

j (i = 1, . . . , m, j = 2, . . . , ni)
+zi

j + −zi
j ≤ 1 (i = 1, . . . , m, j = 1, . . . , ni)

ni
j=1

+zi
j ≤ 1 (i = 1, . . . , m)

ni
j=1

−zi
j ≤ 1 (i = 1, . . . , m)

χi
q ∈ {0, 1} (i = 1, . . . , m, q = 0, 1, . . . , N)

χi
gi

j
≥ zi

j (i = 1, . . . , m, j = 1, . . . , ni)

χi
q ≤ j:gi

j=q zi
j (i = 1, . . . , m, q = 0, 1, . . . , N)

ιi
q ∈ {0, 1} (i = 1, . . . , m, q = 0, 1, . . . , N)

ιi
q ≤ xq (i = 1, . . . , m, q = 0, 1, . . . , N)

ιi
q ≤ χi

q (i = 1, . . . , m, q = 0, 1, . . . , N)
ιi
q ≥ xq + χi

q − 1 (i = 1, . . . , m, q = 0, 1, . . . , N)

m ·D− ·w− for missing all genes in X . In many applications, it makes no sense to
consider intervals in which more than a fraction δ− of the reference genes X are
missing or which contain more than a fraction δ+ of additional genes. Therefore
we could restrict the search space by enforcing

∑N
q=0 (xq − ιiq) ≤ �δ− ·D+� and∑N

q=0 (χi
q − ιiq) ≤ �δ+ ·D+�. This may, of course, lead to an empty feasible set.

Instead of paying separately for missed and additional genes, we may argue
that we should view occurrences of both errors as substitutions to the maximum
possible extent. Assuming equal weights w− = w+ = 1, this leads to a cost
contribution of max{|X \Gi

Ji
|, |Gi

Ji
\X} instead of the sum for the i-th genome;

see also [9]. More generally, we may replace the objective function by

minimize
m∑

i=1

max
{

w− ·
N∑

q=0

(xq − ιiq), w+ ·
M∑

q=0

(χi
q − ιiq)

}
by introducing new variables c−i := w− ·

∑N
q=0 (xq−ιiq) and c+

i := w+ ·
∑N

q=0 (χi
q−

ιiq). We let ci = max{c−i , c+
i } by introducing inequalities ci ≥ c−i and ci ≥ c+

i

304 S. Rahmann and G.W. Klau

for i = 1, . . . , m and writing the objective function as min
∑m

i=1 ci, which fixes
ci at the maximum of c−i and c+

i , and not at a larger value.

A single circular chromosome or multiple linear chromosomes. Bacterial genomes
usually consist of a single circular chromosome, i.e., any circular permutation of
g = (g1, . . . , gn) in fact represents the same genome, and the start and end points
are arbitrary. Therefore we need to allow intervals that “wrap around”.

Extending the definition of a linear interval from Section 2, we say that an in-
terval is either a linear interval or a wrapping interval.

A wrapping interval in g = (g1, . . . , gn) is a nonempty index set J := [j | k] :=
{j, j + 1, . . . , n, 1, . . . , k}, with 1 ≤ j, k ≤ n and j > k + 1.

The gene content of a wrapping interval is GJ ≡ G[j|k] := {gj, . . . , gn, g1, . . . ,
gk}, and its length is |J | = n−j+1+k. We specifically disallow j = k+1 because
this would induce the whole genome, for which we already have the linear interval
[1 : n].

As an example, in a genome of length 3, there are seven linear intervals (∅, [1 : 1],
[2 : 2], [3 : 3], [1 : 2], [2 : 3], [1 : 3]), and a single wrapping interval: [3 | 1].

For a wrapping interval in gi, the ones in the indicator vector zi occur in two
distinct blocks with the first block starting at position j = 1 and the second block
ending at position ni. Therefore there are two points j with +zi

j = 1, but only if
j = 1 is one of them. To allow arbitrary intervals (empty, linear, or wrapping), all
we need to do is to change the sum constraint for +zi from Table 2 into

∑ni

j=2
+zi

j ≤
1 (i = 1, . . . , m).

While the main applications of our work are to genome rearrangements in
prokaryotes, we nevertheless show how to allow multiple linear chromosomes: We
extend the gene universe by another special number −1 and concatenate the chro-
mosomes of the i-th genome into a single vector gi as before, representing chro-
mosome borders by −1. We constrain the interval selection variables zi

j wherever
gi

j = −1 to be zi
j = 0; this ensures that the interval Ji does not extend over a

chromosome border.

Genome selection. So far we have requested that X occurs in every input genome,
or incurred a possibly severe cost of at most w− · |X | if no gene of X appears in
the genome. When we look for approximate gene clusters in a large set of genomes
and only require that the cluster occurs in some of them, it is desirable to relax
this penalty.

We extend the formulation with an index set I ⊂ {1, . . . , m} and refer to the
genomes indexed by I as the selected genomes ; these are treated as before, i.e.,
missing and additional genes in the selected intervals are penalized by w− and w+,
respectively. For non-selected genomes, we force that Ji is the empty interval, but
we only incur a flat penalty ρ ≥ 0 that should be chosen substantially smaller than
w− ·D−. We also specify a minimal number μ ≤ m of genomes to be selected, i.e.,
we demand that |I| ≥ μ. The cost function then becomes

c := c(X, I, (Ji)) =
∑
i∈I

[
w− · |X \Gi

Ji
|+ w+ · |Gi

Ji
\X |

]
+ (m− |I|) · ρ.

Integer Linear Programs for Discovering Approximate Gene Clusters 305

For the ILP, we model I as another binary vector y = (y1, . . . , ym) ∈ {0, 1}m

with yi = 1 if and only if i ∈ I. We have the constraint
∑m

i=1 yi ≥ μ. To enforce
Ji = ∅ for i /∈ I, we use the inequalities zi

j ≤ yi for all i = 1, . . . , m, j = 1, . . . , ni.
It remains to properly rewrite the target function. The obvious approach to

minimize
m∑

i=1

[
yi ·
(
w− ·

N∑
q=0

(xq − ιiq) + w+ ·
M∑

q=0

(χi
q − ιiq)

)
+ (1− yi) · ρ

]
does not work, because this function is nonlinear in the variables.

However, a simple solution is available when X is constrained to be of fixed size
D− = D+ = D: If yi = 0, then zi, χi and ιi are the zero vector and under the old
cost function, we would pay D · w−. Now we only pay ρ; therefore we can write
the objective function as

min.
m∑

i=1

[
w− ·

N∑
q=0

(xq − ιiq) + w+ ·
M∑

q=0

(χi
q − ιiq) + (1− yi) · (ρ−Dw−)

]
.

If D− < D+, the above approach does not work, unless we change the flat
penalty from ρ into ρ + |X | −D−, which may put larger X at a disadvantage. In
that case we can use the same formulation as above with D replaced by D−.

For the general case of D− < D+ and a true flat penalty ρ we can use a so-called
big-M approach: We write the objective function as

c = ρ ·
m∑

i=1

(1 − yi) +
m∑

i=1

Li,

where the Li are new auxiliary variables, which we will force to take values

Li =

{∑N
q=0

(
w− · (xq − ιiq) + w+ · (χi

q − ιiq)
)

=: �i if yi = 1,
0 if yi = 0.

We achieve this via inequalities Li ≥ 0 and Li ≥ �i − M · (1 − yi) for all i =
1, . . . , m and a constant M larger than any possible value of �i. If yi = 1, the
inequality becomes Li ≥ �i, and since the objective function c is to be minimized,
this will lead to Li = �i. If yi = 0, it becomes Li ≥ −M ′ for some M ′ ≥ 0
and is dominated by the non-negativity constraint Li ≥ 0. Often, such a big-M
approach causes technical problems for the ILP solver, however, as it leads to weak
LP relaxations [3].

Using a reference genome. Even in the basic AGCDP, there is a lot of freedom
because the reference gene set X need not occur exactly in any of the genomes. In
some cases, however, a reference genome may be known and available. This makes
the problem much easier, and an ILP formulation would not be required, and the
solver could be easily replaced by simpler specialized algorithms. It is reassuring,
however, that a reference genome can be easily integrated into the formulation:
Without loss of generality, let g1 be the reference genome. We force xq = χ1

q = ι1q
for q = 0, . . . , N and possibly y1 = 1 if we are using genome selection.

306 S. Rahmann and G.W. Klau

Modeling common intervals, max-gap clusters and r-windows. By specifying ap-
propriate target functions and constraints, the ILP approach can be used to model
existing definitions of gene clusters. For those mentioned here, efficient algorithms
exist, and we certainly cannot beat them. It is still convenient that we can treat
them in the ILP framework, too.

To model exact common intervals as in [5], we restrict the cost function to take
the value zero (i.e., we allow no additional and no missing genes), and set w− =
w+ = 1. Additionally, we can apply genome selection with ρ = 0 and a reasonably
large value for μ. From the result, we only use the reference set X and disregard
the intervals.

The specification of max-gap clusters or gene teams [6] is a generalization of
common intervals and demands that between adjacent genes from the reference
set X , there are at most δ genes not from X . For δ = 0, we obtain again common
intervals. For δ > 0, the max-gap condition states that in each sub-interval of Ji

of length δ + 1, we need at least one X-gene: For each i = 1, . . . , m and each j =
1, . . . , ni−δ we have that if zi

j + · · ·+zi
j+δ = δ+1, then ιigj

+ιigj+1
+ · · ·+ιigj+δ

≥ 1
must hold. Each implication can be written as an inequality:

ιigj+1
+ · · ·+ ιigj+δ

≥ zi
j + · · ·+zi

j+δ−(δ+1)+1 (i = 1, . . . , m; j = 1, . . . , ni−δ).

We use w− = 1 and w+ = 0 and constrain the target function to zero. To find
maximal max-gap clusters, i.e., those not contained in a larger one, we enumerate
all max-gap clusters of each size D and subsequently filter out those contained in
larger ones.

An r-window cluster for two genomes is defined as a pair of intervals of length
r that share at least D genes [8]. To find them, we demand |X | = D, set w− = 1,
w+ = 0, constrain the target function to zero, and demand that

∑ni

j=1 zi
j = r for

each i = 1, . . . , m.

5 Computational Results

We have implemented a C++ software tool that reads in a set of genomes, solves one
of the integer linear programming formulations presented in Sects. 3 and 4 using
the CPLEX optimization library [10], and outputs the list of optimal and close
to optimal gene clusters. All experiments were performed on an AMD 2.2 GHz
opteron 64 bit processor with 8 GB of main memory using CPLEX 9.03.

Hidden clusters in artificial data. We generate artificial problem instances for
benchmarking as follows: We randomly generate 6 genomes of roughly 1,000 genes
each (N = 2000) with 5% of 0-genes. For each D ∈ {5, 10, 15, 20, 25}, we generate
a cluster and hide a perturbed permutation of it in five randomly selected genomes,
taking care that the different clusters do not overlap.

Using w− = 2, w+ = 1 and the appropriate value of D, we solve the ILP first
with genome selection, setting ρ = 2D/5: We retrieve all five clusters in times
29 min, 45 min, 8 min, 113 s, and 14 s, respectively.

Integer Linear Programs for Discovering Approximate Gene Clusters 307

Without genome selection, running times are much faster, but we can run into
problems because of the high penalty for the genome in which the cluster is miss-
ing: We retrieve the clusters of sizes 5, 10, 15, and 25 in 17 min, 7 min, 163 s, and
4 s, respectively. For D = 20, we obtain a different cluster than the hidden one
that obtains a better target function value without genome selection.

While the running times vary with each instance, the times shown here are rep-
resentative. This experiment indicates the importance, but also the high complex-
ity of genome selection.

Comparison of two organisms. The genomes of C. glutamicum and M. tuberculosis
consist of 3,057 and 3,991 annotated genes, respectively. The annotated gene set
is available at http://gi.cebitec.uni-bielefeld.de/assb. We compute the
optimal objective function value c∗(D) for each cluster size D ∈ [5, 500] for the
basic formulation with w− = w+ = 1 (total CPU time: almost 25 days, on aver-
age 1:15 hrs per instance). Figure 1 shows the running time per instance as well as
the optimal normalized costs c∗(D)/D. Local minima correspond to large approx-
imate clusters with comparatively few errors. As Fig. 2 illustrates for D = 51, our
formulation discovers clusters that cannot be detected by any method that does
not consider approximate clusters. The largest exact cluster has size 11.

6 Discussion

We have given several formalizations and corresponding ILP formulations for ap-
proximate gene clusters. In contrast to other models, we do not only characterize
the set of desired clusters, but also assign a value (the objective function) to them.
Our approach allows us to check different gene cluster models for biological rel-
evance before designing optimized algorithms, and to discover optimal medium-
sized to large approximate clusters that contain no smaller exact ones if they exist
and if the ILP solver can handle the problem.

The apparent complexity of our approach comes from the fact that we use a
reference set X of genes that need not occur exactly in any genome. While we have
not attempted to formally prove the corresponding decision problem NP-hard, the
difficulties encountered by the ILP solver and the similarity to the median string
problem provide some evidence. The problem becomes even harder (empirically
in terms of CPU time) if genome selection is allowed. The situation changes if
we require that X occurs in at least one genome without errors. Then a naive
polynomial-time algorithm works as follows:

Tentatively set X to the gene set of each interval in each genome. For each
genome g except the one where X is taken from, compare X to the character set
of each interval J in g, compute the cost according to the number of missing and
additional genes, and pick the interval J∗

g in g with minimum cost c∗g. Now genome
selection can be easily applied: Simply remove as many costly genomes as possible.
The total cost of X (without genome selection) is c(X) =

∑
g c∗g. Either report the

overall best set X , or report each X , where c(X) remains below a given threshold.
(Of course, this “algorithm” can be drastically optimized for efficiency.)

308 S. Rahmann and G.W. Klau

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cluster size D

C
P

U
 ti

m
e

[4
 h

rs
];

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
c* (D

)
/D

CPU time [units of 4 hrs]

Normalized objective function c*(D) /D

Fig. 1. Comparison of C. glutamicum and M. tuberculosis: For each cluster size D ∈
[5, 500], the running time in units of four hours, and the normalized optimal value of
the objective function is shown. Note the local minima in the objective function, e.g., at
D = 51. The apparent correlation between objective function and running time indicates
that good approximate clusters are easier to compute than bad clusters.

C.glutamicum (389 698 33 760 267 267 1156 1 2 55 852 1187 17 321 143 927 372 928 281 0 1739 54

945 1 979 983 467 524 219 850 914 697 384 1439 648 713 650 268 403 795 124)

M.tuberculosis (124 795 403 268 1 1527 650 0 0 713 648 1439 0 0 384 697 914 850 0 225 9 12 100 4

9 1725 84 180 0 9 219 524 467 0 979 9 88 5528 5714 281 928 372 927 143 9 321 9 4

17 3311 852 55 2 1 1156 0 267 760 33 698 389)

a

a

ab

b c

c

Fig. 2. Visualization of an interesting optimal cluster in C. glutamicum and M. tuber-
culosis (D = 51). Differing genes are marked in grey. Three conserved regions, a, b, and
c occur in the cluster.

Important open questions are statistics (significance computations) for gene
clusters from our formulations in the spirit of [8], and to formalize a notion of a
non-redundant set of gene clusters when enumerating all near-optimal solutions.

Our ILP formulations open a new perspective to the field of approximate gene
cluster discovery, and are already usable in practice. We believe that the formu-
lations and the solver can be fine-tuned to solve the same instances even faster,
even if the basic AGCDP with or without genome selection is indeed NP-hard.

Integer Linear Programs for Discovering Approximate Gene Clusters 309

We are experimenting with alternative methods for genome selection and with an
alternative formulation of the consecutive-ones property of the interval indicators
zi

j brought to our attention by Marcus Oswald (Heidelberg).
Another desideratum for the future is to avoid solving the problem for each

gene set size D separately. So far this is convenient because it allows simplifica-
tions in some formulations, but it seems to slow down the solver drastically (data
not shown). Yet a fixed |X | = D is also necessary because optimal objective func-
tion values for different |X | do not compare well: Even “good” clusters of size 30
might have higher cost than “bad” clusters of size 5. Normalizing the cost function
by |X | seems a promising idea, and we are exploring fractional programming tech-
niques to this end. Overcoming the D-bottleneck would make the ILP approach
even more useful in practice and remains an interesting challenge.

Acknowledgments. We thank Thomas Schmidt for providing datasets, Jens Stoye,
Yoan Diekmann, Julia Mixtacki, and Markus Oswald for helpful discussions.

References

1. Snel, B., Bork, P., Huynen, M.A.: The identification of functional modules from the
genomic association of genes. Proc. Nat’l Acad. Sci. USA 99 (2002) 5890–5895

2. Hoberman, R., Durand, D.: The incompatible desiderata of gene cluster properties.
In Proc. 3rd RECOMB Workshop on Comparative Genomics RECOMBCG’05. Vol-
ume 3678 of LNCS, Springer Verlaf (2005) 73–87

3. Wolsey, L.A.: Integer programming. Wiley Interscience Series in Discrete Mathe-
matics and Optimization. John Wiley & Sons (1998)

4. Heber, S., Stoye, J.: Algorithms for finding gene clusters. In Proc. 1st Workshop
on Algorithms in Bioinformatics WABI’01. Volume 2149 of LNCS, Springer Verlag
(2001) 252–263

5. Schmidt, T., Stoye, J.: Quadratic time algorithms for finding common intervals in
two and more sequences. In Proc. 15th Symp. on Combinatorial Pattern Matching
CPM’04. Volume 3109 of LNCS, Springer Verlag (2004) 347–358

6. Bergeron, A., Corteel, S., Raffinot, M.: The algorithmic of gene teams. In Proc.
2nd Workshop on Algorithms in Bioinformatics WABI’02. Volume 2452 of LNCS,
Springer Verlag (2002) 464–476

7. Li, Q., Lee, B.T.K., Zhang, L.: Genome-scale analysis of positional clustering of
mouse testis-specific genes. BMC Genomics 6 (2005) 7

8. Durand, D., Sankoff, D.: Tests for gene clustering. J. Comput. Biol. 10 (2003)
453–482

9. Chauve, C., Diekmann, Y., Heber, S., Mixtacki, J., Rahmann, S., Stoye, J.: On
common intervals with errors. Technical Report 2006-02, Abteilung Information-
stechnik, Technische Fakultät, Universität Bielefeld (2006) ISSN 0946-7831.

10. ILOG, Inc.: CPLEX. http://www.ilog.com/products/cplex (1987–2006)

Approximation Algorithms for Bi-clustering

Problems

Lusheng Wang1, Yu Lin1,2, and Xiaowen Liu1

1 Department of Computer Science, City University of Hong Kong, Hong Kong
2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

{lwang, linyu, liuxw}@cs.cityu.edu.hk

Abstract. One of the main goals in the analysis of microarray data is to
identify groups of genes and groups of experimental conditions (includ-
ing environments, individuals and tissues), that exhibit similar expres-
sion patterns. This is the so-called bi-clustering problem. In this paper,
we consider two variations of the bi-clustering problem: the Consensus
Submatrix Problem and the Bottleneck Submatrix Problem. The input
of the problems contains a m × n matrix A and integers l and k. The
Consensus Submatrix Problem is to find a l × k submatrix with l < m
and k < n and a consensus vector such that the sum of distance between
all rows in the submatrix and the vector is minimized. The Bottleneck
Submatrix Problem is to find a l × k submatrix with l < m and k < n,
an integer d and a center vector such that the distance between every
row in the submatrix and the vector is at most d and d is minimized.
We show that both problems are NP-hard and give randomized approxi-
mation algorithms for special cases of the two problems. Using standard
techniques, we can derandomize the algorithms to get polynomial time
approximation schemes for the two problems. To our knowledge, this is
the first time that approximation algorithms with guaranteed ratio are
presented for microarray analysis.

1 Introduction

In the last several years, microarray technique has been widely used in biological
research. Microarray technique has helped to illuminate mechanisms of disease
and identify disease subphenotypes, predict disease progression, assign function
to previously unannotated genes, group genes into functional pathways, and pre-
dict activities of new compounds [1]. Microarray data analysis is an important
problem in computational biology [2]. For these large-scale data, classifying genes
into different groups under certain conditions is a first step to gain more sophisti-
cated knowledge of different biological pathways or functions. Several clustering
or classification techniques, such as k-means [3,4], self-organizing maps [5,6],
hierarchical clustering [7,8,9], principal component analysis and singular value
decomposition [10,11,12] have been extensively applied to identify groups of sim-
ilarly expressed genes and conditions from gene expression data.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 310–320, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation Algorithms for Bi-clustering Problems 311

Data errors in microarray are common in the analysis of gene expression
data [15,17,18]. The sources of microarray error variability are from various bi-
ological and experimental factors, such as biological and individual replication,
sample preparation, hybridization and image processing. Moreover, the same
gene often shows quite heterogeneous error variability under different biological
and experimental conditions [19]. The accurate measurements of absolute ex-
pression levels and the reliable detection of low abundance genes are difficult to
achieve [16]. For example in mammalian Affymetrix microarrays, an unexpect-
edly large number of probes (greater than 19% of the probes on each platform)
that do not correspond to their appropriate mRNA reference sequences were
identified [14]. A lot of work on statistical analysis of gene expression data
encourages researchers to consider error and uncertainty in their microarray ex-
periments [13].

It is known that many activation patterns are common to a group of genes
only under specific experimental conditions. We should expect subsets of genes to
be coregulated and coexpressed only under certain experimental conditions, but
to behave almost independently under other conditions, according to our general
understanding of cellular processes [21,22,23]. The fact is that we need to discover
local patterns in the microarray matrix. The basic model for Bi-clustering is as
follows: given an m×n matrix A, where each element ai,j ∈ {0, 1}, the problem
here is to find a l × k submatrix with all elements identical to 1 such that l× k
is maximized.

Let Σ = {π1, π2, . . . , π|Σ|} be a fixed size alphabet of symbols. A vector over
Σ is a sequence of symbols in Σ. Let A be an m × n matrix, where each row
corresponds to a gene and each column corresponds to a condition. Each element
ai,j in A represents the expression level of gene i under condition j. Such a matrix
A is defined by its set of m rows, X = {x1, x2, . . . , xm} and its set of n columns,
Y = {y1, y2, . . . , yn}. Let P = {p1, . . . , pl} be a subset of {1, 2, . . . , m} indicating
rows in X and Q = {q1, . . . , qk} be a subset of {1, 2, . . . , n} indicating columns
in Y . The l×k submatrix AP,Q induced by the pair (P, Q) contains the elements
ai,j , where i ∈ P and j ∈ Q. We treat each row in the matrix or submatrix as
a vector over Σ. Define xi|Q = ai,q1ai,q2 . . . ai,qk

. Let p and p′ be two vectors of
the same length over Σ. d(p, p′) denotes the number of mismatches between the
two vectors. Throughout this paper, we study the following two problems.

The Consensus Submatrix Problem: Given a m×n matrix A, and integers
l and k, find a subset P of l rows, a subset Q of k columns in matrix A and a
consensus vector z of length k such that the consensus score

∑l
i=1 d(xpi |Q, z) is

minimized.

The Bottleneck Submatrix Problem: Given a m×n matrix A, and integers
l and k, find a subset P of k rows, a subset Q of k columns in matrix A, a center
vector z of length k and an integer d such that for every pi ∈ P d(xpi |Q, z) ≤ d
and the bottleneck score d is minimized.

In practice, there are errors in microarray data. In the l × k submatrix, if we
assume that the error rate of each row is bounded by a constant, e.g., 10%, then

312 L. Wang, Y. Lin, and X. Liu

the total consensus score
∑l

i=1 d(xpi |Q, z) is at least O(lk) and the bottleneck
score d is at least O(k). Throughout this paper, we assume that for the consensus
submatrix problem

∑l
i=1 d(xpi |Q, z) = O(lk) and for the bottleneck submatrix

problem d = O(k). Due to technical reasons, in this paper, we consider a special
case, where k = O(n).

2 Previous Work

The basic model for biclustering is to find a submatrix AP,Q with all elements
identical to a constant value [22]:

ai,j = μ, for all i ∈ P, j ∈ Q.

If the submatrix is error-free, both the consensus score and the bottleneck score
are clearly 0 for the new problems that we proposed in the paper.

In practice, it is interest to find submatrices such that all elements in a row
have the same constant value [20,23]. That is,

ai,j = ci, for j ∈ Q.

In this case, all the columns in the submatrix are identical. Again, it is clear
that both the consensus score and the bottleneck score are 0 if the submatrix is
error-free.

A sophisticated approache looks for submatrices in additive model, where

ai,j = ai′,j + c(i, i′), for all i, i′ ∈ P, j ∈ Q (1)

[21,22]. That is, for two elements ai,j and ai′,j in row i and row i′, the difference
is a constant c(i′, i).

Now we show that our model can also handle the additive model. Let r
be a row in the error-free submatrix. We construct a new matrix A′ as
follows:

a′
i,j = ai,j − ar,j for all i ∈ X, j ∈ Y.

Then, the error-free submatrix is converted into a new submatrix A′
P,Q with

element

a′
i,j = ai,j − ar,j

= c(i, r), for all i ∈ P, j ∈ Q. (From (1))

That is, in the resulting submatrix, all elements in a row have the same value.
Thus the additive model degenerates to the second case. Therefore, our models
can also handle the additive model by trying all rows in A as row r.

Cheng and Church proposed the first biclustering model in microarray data
analysis [21]. The model introduced a similarity score called the mean squared

Approximation Algorithms for Bi-clustering Problems 313

residue score H to measure the coherence of the rows and columns in the sub-
matrix.

H(P, Q) =
1

|P ||Q|
∑

i∈P,j∈Q

(ai,j − ai,Q − aP,j + aP,Q)2

where

ai,Q =
1
|Q|
∑
j∈Q

ai,j , aP,j =
1
|P |
∑
i∈P

ai,j , and aP,Q =
1

|P ||Q|
∑

i∈P,j∈Q

(ai,j).

Clearly, the H score is 0 for the first two cases if the submatrix is error-free. We
can show that for the additive model, the H score is also 0 if the submatrix is
error-free.

In this paper, we design randomized approximation algorithms for both prob-
lems. We have an new idea to randomly select O(log m) columns in the optimal
set of columns Qopt ⊆ Y when Qopt is not known. For the bottleneck submatrix
problem, we use linear programming and randomized rounding to successfully
select a good approximation Q of Qopt and set the letters for the center vector at
the columns in Q. Using standard techniques, we derandomize the randomized
algorithms to get polynomial time approximation schemes (PTAS) for the two
problems. To our knowledge, this is the first time that approximation algorithms
with guaranteed ratio are presented for microarray analysis.

The paper is organized as follows. In Section 3, we prove that both problems
are NP-hard. In Section 4, we give the algorithm for the consensus submatrix
problem, while in Section 5. we give that for the bottleneck submatrix problem.

3 NP-Hardness Result

In this section, we show that both the consensus submatrix problem and the
bottleneck submatrix problem are NP-hard. The reduction is from the maximum
edge biclique problem. The maximum edge bipartite problem was proved to be
NP-hard in [24]. A biclique is a complete bipartite graph where every vertex of
the first set is connected to every vertex of the second set.

The Maximum Edge Biclique Problem: Given a biclique graph G = (V1 ∪
V2, E) and a positive integer X , does G contain a biclique with X edges?

Theorem 1. The consensus submatrix problem and the bottleneck submatrix
problem are NP-hard.

The proof also suggests that it is NP-hard to decide whether the minimum con-
sensus score is 0 in the consensus submatrix problem and whether the minimum
bottleneck score is 0 in the bottleneck submatrix problem. Therefore, there are
no approximation algorithms with guaranteed ratio for both problems when the
optimal consensus score or the optimal bottleneck score is 0.

314 L. Wang, Y. Lin, and X. Liu

4 The Consensus Submatrix Problem

In this section, we present the randomized approximation algorithm for the con-
sensus submatrix problem. Let Popt, Qopt and zopt be the set of rows , the set of
columns and the consensus vector of an optimal solution. The optimal consensus
score is Hopt. By assumption, Hopt = O(kl), i.e., there is a constant c′ such that
Hopt × c′ = kl. Again, by assumption, k = O(n), i.e., there is a constant c such
that k × c = n.

Before we present the algorithm, we first introduce the basic ideas of the algo-
rithm. By enumerating all size k subsets of Y and all length k vectors, we could
know Qopt and zopt at some moment. It is easy to see that if we know exactly
Qopt and zopt, then we could find the corresponding Popt in polynomial time
to minimize the consensus score. However, this straight forward approach costs
exponential time. Here we use a random sampling technique to randomly select
O(log m) columns in Qopt, enumerate all possible vectors of length O(log m) for
those columns. At some moment, we know O(log m) bits of zopt and we can use
the partial zopt to select the l rows which are closest to zopt in those O(log m)
bits. After that we can construct a consensus vector z as follows: for each column,
choose the (majority) letter that appears the most in each of the l letters in the
l selected rows. Then for each of the n columns, we can calculate the number of
mismatches between the majority letter and the l letters in the l selected rows.
By selecting the best k columns, we can get a good solution.

The remain difficulty is how to randomly select O(log m) columns in Qopt

while Qopt is unknown. Our new idea is to randomly select a set B of �(c +
1)(4 log m

ε2 + 1)� columns from A and enumerate all size � 4 log m
ε2 � subsets of B in

time O(m
4(c+1)

ε2) which is polynomial in terms of the input size O(mn). We can
show that with high probability, we can get a set of � 4 log m

ε2 � columns randomly
selected from Qopt.

Now we describe the complete algorithm in Figure 1.
The following lemma that is originally from [25] is used in our proofs.

Lemma 1. Let X1, X2, . . . , Xn be n independent random 0-1 variables, where
Xi takes 1 with probability pi, 0 < pi < 1. Let X =

∑n
i=1 Xi, and μ = E[X].

Then for any 0 < ε ≤ 1,

Pr(X > μ + ε n) < (−1
3
nε2),

Pr(X < μ− ε n) ≤ (−1
2
nε2).

Lemma 2. With probability at most m
− 2

ε2c2(c+1) , no subset R of size � 4 log m
ε2 �

used in Step 1 of Algorithm 1 satisfies R ⊆ Qopt .

Lemma 3. Assume |R| = � 4 log m
ε2 � and R ⊆ Qopt. Let ρ = k

|R| . With probability
at most m−1, there is a row xi in X satisfying

d(zopt, xi|Qopt)− εk

ρ
> d(zopt|R, xi|R).

Approximation Algorithms for Bi-clustering Problems 315

Algorithm 1 for The Consensus Submatrix Problem

Input: one m × n matrix A, integers l and k, and a small number ε > 0
Output: a size l subset P of rows, a size k subset Q of columns and a length k
consensus vector z
Step 1: randomly select a set B of �(c + 1)(4 log m

ε2
+ 1)� columns from A.

(1.1)for every size � 4 log m
ε2

� subset R of B do
(1.2) for every z|R ∈ Σ|R| do

(a) Select the best l rows P = {p1, ..., pl} that minimize
d(z|R, xi|R).

(b) for each column j do
Compute f(j) = l

i=1 d(sj , api,j), where sj is the ma-
jority element of the l rows in P in column j.

Select the best k columns Q = {q1, ..., qk} with mini-
mum value f(j) and let z(Q) = sq1sq2 . . . sqk .

(c) Calculate H = l
i=1 d(xpi |Q, z) of this solution.

Step 2: Output P , Q and z with minimum H .

Fig. 1. Algorithm 1

With probability at most m− 1
3 , there is a row xi in X satisfying

d(zopt|R, xi|R) >
d(zopt, xi|Qopt) + εk

ρ
.

Lemma 4. When R ⊆ Qopt and z|R = zopt|R, with probability at most 2m− 1
3 ,

the set of rows P = {p1, . . . , pl} selected in Step 1 (a) of Algorithm 1 satisfies∑l
i=1 d(zopt, xpi |Qopt) > Hopt + 2εkl.

Theorem 2. For any δ > 0, with probability at least 1 −m
− 8c′2

δ2c2(c+1) − 2m− 1
3 ,

Algorithm 1 outputs a solution with consensus score at most (1 + δ)Hopt in
O(nmO(1

δ2)) time.

Proof. When R ⊆ Qopt and z|R = zopt|R, in step 1 (b), we can construct a Q
and z(Q) such that

l∑
i=1

d(z(Q), xpi |Q) ≤
l∑

i=1

d(zopt, xpi |Qopt). (2)

From Lemma 2, we know that with probability at most m
− 2

ε2c2(c+1) , there is
no subset R with size � 4 log m

ε2 � in Step 1 of Algorithm 1 such that R ⊆ Qopt.

Combining with Lemma 4, we know that with probability at most m
− 2

ε2c2(c+1) +
2m− 1

3 , in the execution of Algorithm 1, any set of rows P = {p1, . . . , pl} obtained
in Step 1(a) satisfies

l∑
i=1

d(zopt, xpi |Qopt) > Hopt + 2εkl.

316 L. Wang, Y. Lin, and X. Liu

In other words, with probability at least 1−m
− 2

ε2c2(c+1) −2m−1
3 , in the execution

of Algorithm 1, we can get a set of rows P = {p1, . . . , pl} in Step 1 (a) that
satisfies

∑l
i=1 d(zopt, xpi |Qopt) ≤ Hopt + 2εkl.

From (2), we have

l∑
i=1

d(z(Q), xpi |Q) ≤
l∑

i=1

d(zopt, xpi |Qopt) ≤ Hopt + 2εkl.

Recall Hopt×c′ = kl. Set ε = δ
2c′ . So with probability at least 1−m

− 8c′2
δ2c2(c+1) −

2m− 1
3 , Algorithm 1 outputs a solution with consensus score at most (1+δ)Hopt.

For the time complexity, Step1(a), Step1(b) and Step1(c) take O(mn) time.

Step 1.1 is repeated O(2
4(c+1) log m

ε2) = O(mO(1
ε2

)) = O(mO(1
δ2)) times . Step

1.2 is repeated O(mO(log |Σ|
ε2

)) = O(mO(1
δ2)) times as ε = δ

2c′ and |Σ| is fixed
constant. Thus, the total running time is O(nmO(1

δ2)). �

Theorem 3. There exists a PTAS for the consensus submatrix problem.

Proof. Algorithm 1 can be derandomized by standard method. For instance,
instead of randomly and independently choosing O(log m) columns from the n
columns in Step 1, we can pick the vertices encountered on a random walk of
length O(log m) on a constant degree expander [26]. Obviously, the number of
such random walks on a constant degree expander is polynomial in terms of m.
Thus, by enumerating all random walks of length O(log m), we have a polynomial
time deterministic algorithm(Also see [27]). �

5 The Bottleneck Submatrix Problem

In this section, we present the randomized approximation algorithm for the bot-
tleneck submatrix problem. Let Popt, Qopt and zopt be the set of rows , the set
of columns and the consensus vector of an optimal solution. The optimal bot-
tleneck score is dopt. By assumption, dopt = O(k) and k = O(n), i.e., there are
constants c′′ and c such that dopt × c′′ = k and k × c = n.

Similar to Algorithm 1, we can use a random sampling technique to know
O(log m) bits of zopt. Then we can use the partial zopt to select the l rows which
are closest to zopt in those O(log m) bits as in Step 1(a) of Algorithm 1. From
Lemma 3, we know that using O(log m) bits in R, we can get a good estimation
of d(zopt, xi|Qopt) for each xi in X . Thus, if we can correctly select Qopt from
the n given columns, then we can get a good approximation solution. However,
Step 1 (b) in Algorithm 1 does not work for the bottleneck score in selecting a
good approximation of Qopt. Thus, we use a linear programming and randomized
rounding technique to select k columns in the matrix.

Approximation Algorithms for Bi-clustering Problems 317

Linear Programming Formulation
Given a set of rows P = {p1, ..., pl}, we want to find a set of k columns Q and a
vector z such that the bottleneck score is minimized. This problem is equivalent
to the following optimization problem:{

min d;
d(z, xpi |Q) ≤ d, i = 1, 2, . . . , l, Q ⊆ Y, |Q| = k, z ∈ Σk.

(3)

Let Σ = {π1, π2, . . . , π|Σ|}. We introduce 0− 1 variable yi,j (i = 1, 2, . . . , n, j =
1, 2, . . . , |Σ|) to indicate whether column i is in Q and the corresponding bit of
z. yi,j = 1 if and only if column i is in Q and the corresponding bit in z is πj . For
any a, b ∈ Σ, χ(a, b) = 0 if a = b and χ(a, b) = 1 if a �= b. (3) can be formulated
as the 0− 1 Integer Linear Programming:⎧⎪⎪⎪⎨⎪⎪⎪⎩

min d;∑n
i=1

∑|Σ|
j=1 yi,j = k,∑|Σ|

j=1 yi,j ≤ 1, i = 1, 2, . . . , n,∑n
i=1

∑|Σ|
j=1 χ(πj , xps,i)yi,j ≤ d, s = 1, 2, . . . , l.

(4)

Here yi,j is used to achieve two tasks: (1) decide whether column i is selected
and (2) if column i is selected, we have to decide the letter in the consensus
vector z at the this column.

We can obtain a fractional solution yi,j = yi,j(i = 1, 2, ..., n, j = 1, 2, . . . , |Σ|)
for (4) in polynomial time. After we get the fractional solution, we do randomized
rounding to get an integer solution.

Given a fractional solution yi,j = yi,j (i = 1, 2, . . . , n, j = 1, 2, . . . , |Σ|) with
cost d. For each 1 ≤ i ≤ n, 1 ≤ j ≤ |Σ|, randomly select column i to Q with
probability

∑|Σ|
j=1 yi,j and randomly set the bit of z in this column according

to the distribution yi,j for j = 1, 2, . . . , |Σ|). In terms of programming, we can
generate a random number ρ in (0,1), for every column i. If ρ <

∑|Σ|
j=1 yi,j , we

select this column into Q and let the bit of z corresponding to this column be
πt if and only if

∑t−1
j=1 yi,j ≤ ρ <

∑t
j=1 yi,j . If ρ ≥

∑|Σ|
j=1 yi,j , this column is not

selected. Hence we get a 0/1 solution y′ = {y′
1,1, . . . , y

′
1,|Σ|, . . . , y

′
n,1, . . . , y

′
n,|Σ|}.

In this randomized rounding process, we have to do two things. (1) select k′

columns, where k′ ≥ k − δdopt. (2) get integers values for yi,j such that the
distance (restricted on the k′ selected columns) between any row in P and the
center vector thus obtained is at most γdopt. Here δ > 0 and γ > 0 are two
parameters used to control the errors.

Lemma 5. When nγ2

3(cc′′)2 ≥ 2 log m, for any γ, δ > 0, with probability at most

exp(− nδ2

2(cc′′)2) + m−1, the rounding result y′ = {y′
1,1, . . . , y

′
1,|Σ|, . . . ,

y′
n,1, . . . , y

′
n,|Σ|} does not satisfy at least one of the following inequalities,

n∑
i=1

(
|Σ|∑
j=1

y′
i,j) > k − δdopt,

318 L. Wang, Y. Lin, and X. Liu

Algorithm 2 for The Bottleneck Submatrix Problem

Input: one matrix A ∈ Σm×n, integer l, k, a row z ∈ Σn and small numbers
ε > 0, γ > 0 and δ > 0.
Output: a size l subset P of rows, a size k subset Q of columns and a length k
consensus vector z.
if nγ2

3(cc′′)2 ≤ 2 log m then
try all size k subset Q of the n columns and all z of length k
to solve the problem.

if nγ2

3(cc′′)2 > 2 log m then

Step 1: randomly select a set B of � 4(c+1) log m

ε2
� columns from A.

for every � 4 log m
ε2

� size subset R of B do
for every z|R ∈ Σ|R| do

(a) Select the best l rows P = {p1, ..., pl} that minimize
d(z|R, xi|R).

(b) Solve the optimization problem (3) by linear programming
and randomized rounding to get Q and z.

Step 2: Output P ,Q and z with minimum bottleneck score d.

Fig. 2. Algorithm 2

and for every row xps(s = 1, 2, . . . , l),

n∑
i=1

(
|Σ|∑
j=1

χ(πj , xps,i)y′
i,j) < d + γdopt.

When nγ2

3(cc′′)2 < 2 log m, we try all subsets of X with size k and all length k

vectors in polynomial time and get the best solution.
From Lemma 5, we know that in the randomized rounding process, with high

probability, we selected k′ columns in Q, where (1 − ε)k ≤ k′. Our aim is to
select exactly k columns. If k′ > k, we can arbitrarily delete k′−k columns from
Q and obtain the set of k columns Q′ ⊆ Q. If k′ < k, we can arbitrarily select
k − k′ columns outside Q and add them to Q to get a set of k columns Q′ ⊃ Q.
By doing so, the extra error introduced is at most εk. Since d = O(n), the error
εk is small and we still can get a PTAS.

Now we describe the complete algorithm in Figure 2.
Similar to Lemma 4, we have

Lemma 6. When R ⊆ Qopt and z|R = zopt|R, with probability at most 2m− 1
3 ,

the set of rows P = {p1, . . . , pl} obtained in Step 1(a) of Algorithm 2 satisfies
d(zopt, xpi |Qopt) > dopt + 2εk for some row xpi(1 ≤ i ≤ l).

From Lemmas 2, 5, and 6, we have

Theorem 4. With probability at least 1−m
− 2

ε2c2(c+1) −2m− 1
3 −exp(− nδ2

2(cc′′)2)−
m−1, Algorithm 2 runs in time O(nO(1)m

O(1
ε2

+ 1
γ2)) and obtains a solution with

bottleneck score at most (1 + 2c′′ε + γ + δ)dopt for any fixed ε, γ, δ > 0.

Approximation Algorithms for Bi-clustering Problems 319

Theorem 5. There exists a PTAS for the bottleneck submatrix problem.

Proof. For Step 1(b), we can use the technique in [25] to derandomize it. The
derandomization of the random sampling step is the same as in Algorithm 1. �

6 Conclusion

We have designed PTAS’s for both the consensus submatrix and the bottleneck
submatrix problems. To our knowledge, this is the first time that an approxi-
mation algorithm with guaranteed performance ratio is presented for microarray
analysis. It is conscious to point out that the running time is very high and may
not work in practice.

Acknowledgements

This work is fully supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. CityU 1070/02E].

References

1. R.B. Stoughton. Applications of DNA microarrays in biology. Annual Rev.
Biochem., 74:53–82, 2005.

2. D.B. Allison, X. Cui, G.P. Page, and M. Sabripou. Microarray data analysis: from
disarray to consolidation and consensus. Nature Reviews Genetics, 7:55–65, 2006.

3. S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, and G.M. Church. Systematic
determination of genetic network architecture. Nat. Genet., 22:281–285, 1999.

4. F.X. Wu, W.J. Zhang, and A.J. Kusalik. A genetic K-means clustering algorithm
applied to gene expression data. LNAI, 2671, Springer Verlag (2003), 520–526.

5. P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E.S. Lan-
der, and T.R. Golub. Interpreting patterns of gene expression with self-organizing
maps: methods and application to hematopoietic differentiation. Proc. Nat’l Acad.
Sci. USA, 96:2907–2912, 1999.

6. H. Ressom, D. Wang, and P. Natarajan. Clustering gene expression data using
adaptive double selforganizing map. Physiol. Genomics, 14:35–46, 2003.

7. M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proc. Nat’l Acad. Sci. USA, 95:14863–
14868, 1998.

8. V.R. Iyer, M.B. Eisen, D.T. Ross, G. Schuler, T. Moore, J.C. Lee, J.M. Trent,
L.M. Staudt, J. Hudson Jr., M.S. Boguski, D. Lashkari, D. Shalon, D. Botstein,
and P.O. Brown. The transcriptional program in the response of human fibroblasts
to serum. Science, 283:83–87, 1999.

9. J. Qin, D.P. Lewis, and W.S. Noble. Kernel hierarchical gene clustering from mi-
croarray expression data. Bioinformatics, 19:2097–2104, 2003.

10. O. Alter, P.O. Brown, and D. Botstein. Generalized singular value decomposition
for comparative analysis of genome-scale expression data sets of two different or-
ganisms. Proc. Nat’l Acad. Sci. USA, 100:3351–3356, 2003.

320 L. Wang, Y. Lin, and X. Liu

11. N.S. Holter, M. Mitra, A. Maritan, M. Cieplak, J.R. Banavar, and N.V. Fedoroff.
Fundamental patterns underlying gene expression profiles: simplicity from com-
plexity. Proc. Nat’l Acad. Sci. USA 97:8409–8414, 2000.

12. K.C. Li, M. Yan, and S.S. Yuan. A simple statistical model for depicting the cdc15-
synchronized yeast cell-cycle regulated gene expression data. Statistica Sinica,
12:141–158, 2002.

13. B. Tjaden. An approach for clustering gene expression data with error Information.
BMC Bioinformatics, 7:17, 2006.

14. B.H. Mecham, D.Z. Wetmore, Z. Szallasi, Y. Sadovsky, I. Kohane, and T.J. Mar-
iani. Increased measurement accuracy for sequence-verified microarray probes.
Physiol. Genomics 18:308–315, 2004.

15. D.M. Rocke and B. Dubin. A Model for Measurement Error for Gene Expression
Arrays. J. of Computational Biology, 8(6):557–569, 2001.

16. S. Draghici, P. Khatri, A.C. Eklund, and Z. Szallasi. Reliability and reproducibility
issues in DNA microarray measurements. Trends in Genetics 22(2):101–109, 2006.

17. J.P. Brody, B.A. Williams, B.J. Wold, and S.R. Quake. Significance and statis-
tical errors in the analysis of DNA microarray data. Proc. Nat’l Acad. Sci. USA
99:12975–12978, 2002.

18. E. Purdom and S.P. Holmes. Error distribution for gene expression data. Statistical
Applications in Genetics and Molecular Biology, 4(1):16, 2005.

19. H. Cho and J.K. Lee. Bayesian hierarchical error model for analysis of gene ex-
pression data. Bioinformatics, 20:2016–2025, 2004..

20. G. Getz, E. Levine, and E. Domany. Coupled two–way clustering analysis of gene
microarray data. Proc. Nat’l Acad. Sci. USA 12079–12084, 2000.

21. Y. Cheng and G.M. Church. Biclustering of expression data. Proc. 8th Conf. on
Intelligent Systems for Molecular Biology ISMB’00, 93–103, 2000.

22. S.C. Madeira and A.L. Oliveira. Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
1:24–45, 2004.

23. S. Lonardi, W. Szpankowski, and Q. Yang. Finding biclusters by random projec-
tions. Proc. Symp. on Combinatorial Pattern Matching CPM’04, LNCS, Springer
Verlag (2004), 102–116..

24. R. Peeters. The maximum edge biclique problem is NP-complete. Discrete Applied
Mathematics, 131(3):651–654, 2003.

25. M. Li, B. Ma, and L. Wang. On the closest string and substring problems. J. ACM,
49(2):157–171, 2002.

26. D. Gillman. A Chernoff bound for random walks on expander graphs. Proc. 34th
Symp. on Foundations of Computer Science FOCS’93, IEEE Computer Society
Press, 680–691, 1993.

27. S. Arora, D. Karger, and M. Karpinski. Polynomial-time approximation schemes
for dense instances of NP-hard problems. Proc. 27th ACM Symp. on Theory of
Computing STOC’95, ACM Press, 284–293, 1995.

Improving the Layout of Oligonucleotide

Microarrays: Pivot Partitioning

Sérgio A. de Carvalho Jr.1,2,3 and Sven Rahmann1,3

1 International NRW Graduate School in Bioinformatics and Genome Research
2 Graduiertenkolleg Bioinformatik, Bielefeld University, Germany

Sergio.Carvalho@cebitec.uni-bielefeld.de
3 Algorithms and Statistics for Systems Biology group, Genome Informatics,

Technische Fakultät, Bielefeld University, D-33594 Bielefeld, Germany
Sven.Rahmann@cebitec.uni-bielefeld.de

Abstract. The production of commercial DNA microarrays is based
on a light-directed chemical synthesis driven by a set of masks or mi-
cromirror arrays. Because of the natural properties of light and the ever
shrinking feature sizes, the arrangement of the probes on the chip and
the order in which their nucleotides are synthesized play an important
role on the quality of the final product. We propose a new model called
conflict index for evaluating the layout of microarrays. We also present
a new algorithm, called Pivot Partitioning, that improves the quality of
layouts, according to existing measures, by over 6% when compared to
the best known algorithms.

1 Introduction

An oligonucleotide microarray is a piece of glass or plastic on which single-
stranded fragments of DNA, called probes, are affixed or synthesized. Affymetrix
GeneChip R© arrays, for instance, can contain more than one million spots as small
as 11 μm, with each spot accommodating several million copies of a probe. Probes
are typically 25 nucleotides long and are synthesized on the chip, in parallel, in
a series of repetitive steps. Each step appends the same nucleotide to probes
of selected regions of the chip. Selection occurs by exposure to light with the
help of a photolithographic mask that allows or obstructs the passage of light
accordingly [5].

Formally, we have a set of probes P = {p1, p2, ...pn} that are produced by a
series of masks M = (m1, m2, ...mT), where each mask mt induces the addition
of a particular nucleotide St ∈ {A, C, G, T} to a subset of P . The nucleotide
deposition sequence S = S1S2 . . .ST corresponding to the sequence of nucleotides
added at each masking step is therefore a supersequence of all p ∈ P [10].

In general, a probe can be embedded within S in several ways. An embedding
of pk is a T -tuple εk = (ek,1, ek,2, ...ek,T) in which ek,t = 1 if probe pk receives
nucleotide St (at step t), or 0 otherwise (Figure 1). In particular, a left-most
embedding is an embedding in which the bases are synthesized as early as possible
(see ε3 in Figure 1).

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 321–332, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

322 S.A. de Carvalho Jr. and S. Rahmann

2
3
4
5
6

7
8
9

1

S =
=
=
=
=
=
=
=
=
=

ε
ε
ε
ε
ε
ε
ε
ε
ε

1 1 1
1 1 1

1 1 1

1 1
1

1 1 1

1

1
1 1 1

1 1

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0

0 0 0 0 0
0
0
0
0
0

0
0

0 0 0

0 0 0 0 0 0
0 0 0

0 0 0

0 0 0
0

0
0

0
0

0 0

0
0

0 0

0

0 0

0 0

0

0
0

0
0

1 1 1

0
0

1 01

ACGTACGTACGT

0 0

T
TT

G
G

G
G

C

C

A

A
t = 1 t = 2 t = 3 t = 4

AATCGTTAC

TCC GAC GCC

GATCTGACT
21 3

4 65

7 8 9

Fig. 1. Synthesis of a hypothetical 3×3 chip. Top left: chip layout and the 3 nt probe
sequences. Top right: deposition sequence and probe embeddings. Bottom: first four
resulting masks.

The deposition sequence is often taken as a repeated permutation of the alpha-
bet, mainly because of its regular structure and because such sequences maximize
the number of distinct subsequences [4].

We distinguish between synchronous and asynchronous embeddings. In the
first case, each probe has exactly one nucleotide synthesized in every cycle of
the deposition sequence; hence, 25 cycles or 100 steps are needed to synthesize
probes of length 25. In the case of asynchronous embeddings, probes can have
any number of nucleotides synthesized in any given cycle, allowing shorter de-
position sequences. All Affymetrix chips that we know of can be asynchronously
synthesized in 74 steps (18.5 cycles), which is probably due to careful probe
selection.

Because of diffraction of light or internal reflection, untargeted spots can be
accidentally activated in a certain masking step, producing unpredicted probes
that can compromise experimental results. This problem is more likely to occur
near the borders between masked and unmasked spots [5]. This observation has
given rise to the term border conflict.

We are interested in finding an arrangement of the probes on the chip together
with embeddings in such a way that the chances of unintended illumination
during mask exposure steps are minimized. The problem appears to be hard
because of the exponential number of possible arrangements, although we are not
aware of an NP-hardness proof. In a separate work [2], we present a formulation
of the above problem as a quadratic assignment problem (QAP), a classical
combinatorial optimization problem that is, in general, NP-hard and particularly
hard to solve in practice [3]. Optimal solutions are thus unlikely to be found even
for small chips and even if we assume that all probes have a single predefined
embedding.

Improving the Layout of Oligonucleotide Microarrays 323

If we consider all possible embeddings (up to several million for a typical
Affymetrix probe), the problem is even harder. For this reason, the problem
has been traditionally tackled in two phases. First, an initial embedding of the
probes is fixed and an arrangement of these embeddings on the chip with min-
imum border conflicts is sought. This is usually referred to as the placement.
Second, a post-placement optimization phase re-embeds the probes considering
their location on the chip, in such a way that the conflicts with the neighboring
spots are further reduced.

It seems intuitive that better results should be achieved if the placement and
embedding phases are considered together, not separately. Because of the gener-
ally high number of embeddings of each single probe in the asynchronous setting,
it is not easy to design algorithms that make efficient use of this additional free-
dom and achieve reasonable running times in practice. In fact, so far we know
of no single publication that merges the two phases; in this article we propose
such a strategy called Pivot Partitioning.

The rest of this paper is structured as follows. Section 2 details two differ-
ent ways of evaluating computed layouts and embeddings; they form the ob-
jective functions that we aim to minimize. As a refinement of the “classical”
border length, we introduce the conflict index measure. Section 3 reviews ex-
isting placement, partitioning, and post-placement strategies. In Section 4 we
discuss an extension of the optimal single probe embedding (OSPE) algorithm
(that first appeared in [7]) to support our new measure. Our partitioning strat-
egy, that for the first time combines partitioning the chip with embedding the
probes, is described in Section 5. Computational results follow in Section 6.

2 Evaluating Layouts and Embeddings

Border length. Hannenhalli and co-workers [6] were the first to give a formal de-
finition of the problem of unintended illumination in the production of microar-
rays. They formulated the Border Length Minimization Problem which aims at
finding an arrangement of the probes together with their embeddings in such a
way that the number of border conflicts during mask exposure steps is minimal.

The border length Bt of a mask mt is defined as the number of borders shared
by masked and unmasked spots at masking step t. The total border length of a
given arrangement is the sum of border lengths over all masks. For example, the
initial four masks shown in Figure 1 have B1 = 4, B2 = 6, B3 = 6 and B4 = 4.
The total border length of that arrangement is 50 (masks 5 to 12 not shown).

Conflict Index. The border length of an individual mask measures the quality
of that mask. We are more interested in estimating the risk of synthesizing a
faulty probe at a given spot, that is, we need a per-probe measure instead of
a per-mask measure. Additionally, the definition of border length does not take
into account two important practical considerations [8]:

a) stray light might activate not only adjacent neighbors but also probes that
lie as far as three cells away from the targeted spot;

324 S.A. de Carvalho Jr. and S. Rahmann

b) imperfections produced in the middle of a probe are more harmful than in
its extremities.

This motivates the following definition of the conflict index C(p) of a probe of
length �p that is synthesized in T masking steps. First, we define a distance-
dependent weighting function, δ(p, p′, t), that accounts for observation a) above:

δ(p, p′, t) :=
{

(d(p, p′))−2 if p′ is unmasked at step t,
0 otherwise, (1)

where d(p, p′) is the Euclidean distance between the spots of p and p′. This
form of weighting function is the same as suggested in [8]. Note that δ is a
“closeness” measure between p and p′ only if p′ is not masked (and thus creates
the potential of illumination at p). To limit the number of neighbors that need
to be considered, we restrict the support of δ(p, p′, ·) to those p′ �= p that are in
a 7× 7 grid centered around p (see Figure 2 left).

We also define position-dependent weights to account for observation b):

ω(p, t) :=
{

c · exp (θ · λ(p, t)) if p is masked at step t,
0 otherwise, (2)

where c > 0 and θ > 0 are constants, and

λ(p, t) := 1 + min(bp,t, �p − bp,t) (3)

is the distance, from the start or end of the final probe sequence, of the last base
synthesized before step t: bp,t denotes the number of nucleotides synthesized
within p up to and including step t, and �p is the probe length (see Figure 2
right).

The motivation behind an exponentially increasing weighting function is that
the probability of a successful stable hybridization of a probe with its target
should increase exponentially with the absolute value of its Gibbs free energy,
which increases linearly with the length of the longest perfect match between
probe and target. The parameter θ controls how steeply the exponential weight-
ing function rises towards the middle of the probe. In our experiments, we set
θ := 5/�p and c = 1/ exp (θ).

We now define the conflict index of a probe p as

C(p) :=
T∑

t=1

(
ω(p, t)

∑
p′

δ(p, p′, t)
)
, (4)

where p′ ranges over all probes that are at most three cells away from p. C(p)
can be interpreted as the fraction of faulty p-probes (because of unwanted
illumination).

We note the following relation between conflict index and border length. De-
fine δ(p, p′, t) := 1 if p′ is a direct neighbor of p and is unmasked in step t, and
:= 0 otherwise. Define ω(p, t) := 1 if p is masked in step t, and := 0 otherwise.
Then

∑
s C(p) = 2

∑T
t=1 Bt, as each border conflict is counted twice, once for p

Improving the Layout of Oligonucleotide Microarrays 325

0.06 0.08 0.10 0.11 0.10 0.08 0.06

0.08 0.13 0.20 0.25 0.20 0.13 0.08

0.10 0.20 0.50 1.00 0.50 0.20 0.10

0.11 0.25 1.00 p 1.00 0.25 0.11

0.10 0.20 0.50 1.00 0.50 0.20 0.10

0.08 0.13 0.20 0.25 0.20 0.13 0.08

0.06 0.08 0.10 0.11 0.10 0.08 0.06
0

2

4

6

8

10

12

0 5 10 15 20 25

Fig. 2. Ranges of values for both δ and ω on a typical Affymetrix chip where probes of
length 25 are synthesized in 74 masking steps. Left: approximate values of the distance-
dependent weighting function δ(p, p′, t) for a probe p (shown in the center) and close
neighbors p′, assuming that p′ is unmasked at step t. Right: position-dependent weights
ω(p, t) on the y-axis for each value of bp,t on the x-axis, assuming that p is masked at
step t.

and once for p′. Therefore border length and total conflict are equivalent for a
particular choice of δ and ω. For our choice (1) and (2), they are not equivalent,
but still correlated: a good layout has both low border length and low conflict
indices.

3 Previous Work

Up to now, the tasks of probe placement and probe embedding were consid-
ered separately. Placement is often handled by (recursively) partitioning the
chip into smaller regions before applying a placement algorithm. We now re-
view existing placement algorithms, partitioning algorithms and post-placement
strategies.

Placement Algorithms. The border length problem on large oligonucleotide ar-
rays of arbitrary probes was first formally addressed in [6]. The article re-
ports that the first Affymetrix chips were designed using a heuristic for the
traveling salesman problem (TSP). The idea consists of building a weighted
graph with nodes representing probes, and edges containing the Hamming dis-
tance between the probe sequences. A TSP tour is approximated, resulting
in consecutive probes in the tour being likely similar. The TSP tour is then
threaded on the array in a row-by-row fashion. A different threading of the TSP
tour, called 1-threading, is suggested to achieve up to 20% reduction in border
length.

A different strategy called Epitaxial placement [7] places a random probe in
the center of the array and continues to insert probes in spots adjacent to already
filled spots. Priority is given to spots with the largest numbers of filled neighbors.
At each iteraction, it examines all non-filled spots and finds a non-assigned probe
with minimum sum of Hamming distances to the neighboring probes, employing
a greedy heuristic to select the next spot. A further 10% reduction in border
conflict over TSP +1-threading is claimed.

326 S.A. de Carvalho Jr. and S. Rahmann

Both the Epitaxial algorithm and the TSP approach do not scale well to large
chips. For this reason, [8] proposes a simpler variant of the Epitaxial algorithm,
called Row-epitaxial, with two main differences: spots are filled in a pre-defined
order, namely from top to bottom, left to right, and only probes of a limited
list of candidates are considered when filling each spot. Experiments show that
Row-epitaxial is the best large-scale placement algorithm, achieving up to 9%
reduction in border length over the TSP +1-threading.

Partitioning Algorithms. The placement problem can be partitioned by dividing
the set of probes into smaller subsets, and assigning these subsets to subre-
gions of the chip. Each subregion can then be treated as an independent chip
or recursively partitioned. In this way, algorithms with non-linear time or space
complexities can be used to compute the layout of larger chips that otherwise
would not be feasible.

The only partitioning that we know of is the Centroid-based Quadrisection [9].
It starts by randomly selecting a probe c1 ∈ P . Then, it selects another probe
c2 maximizing h(c1, c2), the Hamming distance between their embeddings. Sim-
ilarly, it selects c3 and c4 maximizing the sum of Hamming distance between
these four probes that are called centroids. All other probes p ∈ P are then
compared to the centroids and assigned to a subset Pk associated with ck

with minimum h(p, ck). The chip is divided into four quadrants, each being
assigned to a subset Pk . The procedure is repeated recursively on each quad-
rant until a given recursion depth is reached. In the end, the Row-epitaxial
algorithm is used to produce the placement of the probes in each final
subregion.

Post-placement Optimization. Once the placement is done, further reduction of
conflicts can be achieved by re-embedding the probes without changing their
locations. The paper [7] presents a dynamic programming algorithm, that we
call Optimum Single Probe Embedding (OSPE), for computing an optimum
embedding of a probe with respect to the neighboring probes, whose embeddings
are considered fixed. Originally, it was developed for border length minimization;
in Section 4 we give a slightly more general form that also applies to the conflict
index measure.

The OSPE algorithm is the basic operation of several post-placement op-
timization algorithms: Batched Greedy [7], Chessboard [7] and Sequential [9].
Their main difference lies in the order in which the re-embeddings take place.
Since the OSPE never increases the amount of conflicts in a region, all optimiza-
tion algorithms can be executed several times until a local optimal solution is
found, or until the improvements drop below a given threshold.

The Sequential algorithm just proceeds spot by spot, from top to bottom,
left to right, re-embedding all probes with the OSPE algorithm. Surprisingly, it
achieves the greatest reduction of border conflicts with a running time compa-
rable to Batched Greedy, the fastest among the three.

Improving the Layout of Oligonucleotide Microarrays 327

4 Optimum Single Probe Embedding

The Optimum Single Probe Embedding (OSPE) algorithm finds an optimal
embedding of a single probe on a given spot, assuming that all neighboring
embeddings are fixed. It can be seen as a special case of a global alignment
between the probe sequence p of length � and the deposition sequence S of
length T . We use an (� + 1) × (T + 1) array D, where D[i, j] is defined as
the minimum cost of an embedding of p[1..i] into S[1..j]. The cost is the sum
of conflicts induced by the embedding of p on its neighbors plus the conflicts
suffered by p because of the embeddings of its neighbors.

At every step j of the deposition sequence, the probe p can be either masked
or unmasked. Thus, entry D[i, j] is computed as the minimum between the costs
resulting from each possible state:

D[i, j] = min(D[i, j − 1] + Mij , D[i− 1, j − 1] + Uj).

The costs Mij and Uj depend on probe p and neighboring probes p′. Mij

denotes the cost of masking probe p at step j given that base i of p has been
synthesized previously. Any unmasked neighbor p′ generates a conflict on p with
cost ω(p, i) · δ(p, p′, j); therefore the total cost is

Mij =
∑
p′

ω(p, i) · δ(p, p′, j).

Uj denotes the cost of unmasking probe p at step j, which generates a conflict
on each masked neighbor p′ with cost ω(p′, j) · δ(p′, p, j); therefore

Uj =
∑
p′

ω(p′, j) · δ(p′, p, j).

The first column of D is initialized as follows: D[0, 0] = 0 and D[i, 0] = ∞ for
0 < i ≤ �. The first row is D[0, j] = D[0, j − 1] + M0j for 0 < j ≤ T . The time
complexity of the OSPE algorithm is obviously O(� · T).

5 Pivot Partitioning

Traditionally, the microarray layout problem has been tackled in two phases:
placement, during which an initial embedding of the probes is fixed, and post-
placement optimization, when probes are re-embedded using the OSPE algo-
rithm. We believe that better layouts can be produced if the placement phase
also considers the various embeddings that a probe can have. In this section we
propose a new partitioning algorithm called Pivot Partitioning (PP).

Our algorithm has some similarities with the Centroid-based Quadrisection
(CQ) described in Section 3. Its main differences are motivated by the following
observation. As mentioned earlier, some probes can have up to several millions
different embeddings, while others may have only a few or even only one possi-
ble embedding. Probes with more embeddings can better “adapt” to the other

328 S.A. de Carvalho Jr. and S. Rahmann

Algorithm 1. PivotPartitioning
Input: chip dimension,

set of probes P = {p1, p2, ...pn},
maximum partitioning depth tmax

Output: placement of the probes p ∈ P on the chip

1. Select probes p with minimum number of embeddings, E(p), as pivot candidates:
(a) Let Q = {p ∈ P|E(p) is minimal}
(b) Set P ← P \ Q

2. Let the region R consist of all rows and columns.
3. Call the Recursive Partitioning with the initial partitioning depth 1:

return RecursivePartitioning (1, tmax, R, Q, P)

probes, that is, when placed on a particular spot, they are more likely to have
an embedding with fewer conflicts than a probe that has only a limited number
of embeddings.

We use the probes with fewer embeddings, which we call “pivots”, to drive
the partitioning of the probe set and to re-embed the probes just before their
placement (as a partitioning algorithm, PP also works in combination with an-
other placement algorithm). Also, we designed our algorithm to work for border
length as well as conflict index minimization.

5.1 Pivot Candidates

The first step of the Pivot Partitioning (Algorithm1), is to select the pivot
candidates Q, a set of probes that can later be chosen as pivots. Our pivots are
the equivalent of the centroids of the CQ algorithm: they are used to partition the
probe set. They are restricted, however, to the probes having fewer embeddings.

The reasons are two-fold. First, less time is spent choosing the pivots since
fewer candidates need to be considered. Second, probes with fewer embeddings
are better representatives to drive the partitioning. The problem is that some
embeddings may have their unmasked steps concentrated in one region of the de-
position sequence. This is specially true if the probes are embedded in a left-most
or right-most fashion. Some Affymetrix probes, for instance, can be synthesized
in the first 37 masking steps, thus using only half of the total 74 steps. Such
probes are clearly not good choices for pivots. Probes with fewer embeddings,
on the other hand, are guaranteed to cover most (if not all) cycles of the depo-
sition sequence.

In order to guarantee a good partitioning, we limit the size of Q to a minimum
of 1% of the total number of probes1. This is achieved by selecting probes with
the next minimum number of embeddings. Computing the number of embeddings
of a probe takes O(�T) time, where � is the length of the probe and T is the

1 Usually, around 1-2% of the probes of an Affymetrix array have only one possible
embedding; or two, if we consider that they appear in PM/MM pairs and must be
“aligned” in all but the steps that synthesize their middle bases.

Improving the Layout of Oligonucleotide Microarrays 329

Algorithm 2. Recursive Partitioning
Input: current depth t,

maximum depth tmax

rectangular region R of the chip,
set of pivot candidates Q,
set of probes P ,

Output: placement of the probes p ∈ P and q ∈ Q on the region R of the chip

1. If t = tmax then
(a) Re-embed p ∈ P optimally with respect to all q ∈ Q
(b) Return RowEpitaxial (R, P ∪Q)

2. Select q′ and q′′ ∈ Q such that h(q′, q′′) is maximal
3. Partition the set of pivot candidates:

(a) Q′ = {q ∈ Q | h(q, q′) < h(q, q′′)}
(b) Q′′ = {q ∈ Q | h(q, q′) > h(q, q′′)}

(when h(q, q′) = h(q, q′′), assignments are made in an attempt to achieve
balanced partitionings)

4. Partition the set of probes:
(a) P ′ = {p ∈ P | w(p, q′) < w(p, q′′)}
(b) P ′′ = {p ∈ P | w(p, q′) > w(p, q′′)}

(when h(p, q′) = h(p, q′′), assignments are made in an attempt to achieve
balanced partitionings)

5. Partition R into two subregions R′ and R′′ proportionally to the number of probes
in P ′ ∪Q′ and P ′′ ∪ Q′′

6. return RecursivePartitioning (t + 1, tmax, R′, Q′, P ’)
∪ RecursivePartitioning (t + 1, tmax, R′′, Q′′, P”)

length of the deposition sequence. With a few optimizations, however, even a
million probes can be examined in a few minutes.

5.2 Recursive Partitioning

The essence of Pivot Partitioning is its recursive procedure (Algorithm2) that is
executed until a given recursion depth tmax is reached. If the maximum recursion
depth has not been reached yet, we choose a pair of pivots q′ and q′′ ∈ Q
with maximum Hamming distance between their embeddings, h(q′, q′′). All other
q ∈ Q are assigned to a subset of Q associated with the pivot whose Hamming
distance to q is minimum (step 3).

The next step similarly partitions P into two subsets. A probe p ∈ P is as-
signed to the subset associated with the pivot q with minimum weighted distance
w(p, q). The weighted distance is computed with the OSPE algorithm, ignoring
the location of the probes since they have not been placed yet. In this way, we
make the assignments considering all possible embeddings of p.

Step 5 partitions R into two subregions, proportionally to the number of
probes in Q′ ∪ P ′ and Q′′ ∪ P ′′, alternating horizontal and vertical divisions.
Since we only deal with rectangular regions, sometimes it is necessary to move

330 S.A. de Carvalho Jr. and S. Rahmann

a few probes from one partition to the other in order to ensure that the probes
fit in the subregions.

Each subregion is then processed recursively. Once the maximum partition-
ing depth tmax is reached, the Row-epitaxial [8] algorithm is used to place the
probes of P ∪ Q in the region R. Before that, however, all probes p ∈ P are
re-embedded optimally with respect to the pivots (again using OSPE ignor-
ing probe locations), which improves the “alignment” of all embeddings in that
region.

6 Results and Discussion

We now present the results of running our Pivot Partitioning (PP) algorithm
on random chips. Table 1 shows the normalized border length (total border
length divided by the number of probes) using our own implementations of
Row-epitaxial (for the placement) as well as the Sequential post-placement op-
timization.

Our results show that, in the first level of partitioning, PP allows for a reduc-
tion in border length by as much as 16% when compared to running the Row-
epitaxial alone (from 41.27 to 34.69 on 500×500 chips). The total border length
for tmax = 2 on 500× 500 is 8 673 722. This represents a reduction of as much as
6.8% over the layout produced by the Centroid-based Quadrisection (CQ) simi-
larly combined with Row-epitaxial and followed by the Sequential optimization,
which produced a layout with a border length of 9 307 510 as reported in [9]. In
the next levels of partitioning, we observe a small increase in border length but,
on the other hand, we also report a significant reduction in running times.

Table 2 shows similar results with the average conflict index. For these ex-
periments, we use a version of Row-epitaxial implemented for conflict index
minimization, which fills every spot with a probe p minimizing C(p). For the
post-placement optimization, we use the Sequential algorithm with OSPE for
conflict index minimization as described in Section 4. Computing the conflict in-
dex of a spot for every probe candidate is not as straight forward as computing

Table 1. Normalized border length of layouts produced by Pivot Partitioning on ran-
dom chips with dimensions ranging from 100 × 100 to 500× 500, with probes synchro-
nously embedded in a deposition sequence of length 100. Partitioning depths ranges
from tmax = 0 (no partitioning) to tmax = 6. Row-epitaxial is used for the placement
(with Q = 20 000), followed by the Sequential post-placement optimization. Running
times are reported in seconds, and do not include the post-placement optimization.

tmax = 0 tmax = 2 tmax = 4 tmax = 6

Dim Cost Time Cost Time Cost Time Cost Time

100 42.77 34 39.19 13 40.72 10 42.11 11
200 41.63 429 37.30 155 38.53 62 40.00 85
300 41.38 1 174 36.12 766 37.22 264 38.53 139
500 41.27 3 524 34.69 3 472 35.50 1 996 36.58 713

Improving the Layout of Oligonucleotide Microarrays 331

Table 2. Average conflict index of layouts produced by Pivot Partitioning on random
chips of synchronous embeddings. We use versions of the Row-epitaxial (with Q =
2000) and the Sequential algorithms for conflict index minimization.

tmax = 0 tmax = 2 tmax = 4 tmax = 6

Dim Cost Time Cost Time Cost Time Cost Time

100 514.49 45 453.67 37 467.78 19 475.44 15
200 517.07 192 466.22 215 452.41 166 462.55 99
300 518.51 438 475.84 524 452.00 466 448.17 336
500 517.50 1 471 481.36 1 530 462.33 1 472 445.43 1 295

the Hamming distance between a probe and its neighbors; thus both versions
of Row-epitaxial and Sequential for conflict index minimization are significantly
slower. For this reason, we set the limit on the number of probes considered by
the Row-epitaxial to Q = 2 000.

We also compare the performance of Pivot Partitioning with the Centroid-
based Quadrisection (CQ). Table 3 shows the total border length of layouts
produced by CQ as reported in [9]. We run PP on similar input and report the
results with equivalent partitioning depths (two levels of PP are equivalent to
one level of CQ). The results are shown as a percentage of reduction in border
length compared to CQ. For instance, on 500× 500 chips, PP produces layouts
with 8.95% less conflicts than CQ, on average.

Our results show that PP produces layouts with less conflicts than CQ except
for higher partitioning depths on the smaller chips. We suspect that this disad-
vantage is due to the “borrowing heuristic” used by CQ that permits, during the
placement, borrowing probes from neighboring partitions in order to maintain a

Table 3. Comparison between Pivot Partitioning (PP) and Centroid-based Quadri-
section (CQ) on random chips with dimensions ranging from 100 × 100 to 500 × 500,
whose probes are synchronously embedded in a deposition sequence of length 100. The
partitioning depths varies from L = 1 to L = 3 for the CQ algorithm and, equiva-
lently, from tmax = 2 to tmax = 6 for PP. Both partitionings use Row-epitaxial for the
placement (with Q = 20 000) and are followed by the Sequential post-placement opti-
mization. The data shows the total border length of chips produced by CQ (extracted
from [9]), and the results of using PP on similar input, as percentage of the reduction
in border length compared to CQ. For instance, PP generates on average 8.95% less
border length on 500 × 500 chips with tmax = 2.

CQ PP CQ PP CQ PP

Dim L = 1 tmax = 2 L = 2 tmax = 4 L = 3 tmax = 6

100 393 218 0.18% 399 312 -1.89% 410 608 -2.48%
200 1 524 803 2.27% 1 545 825 0.48% 1 573 096 -1.34%
300 3 493 552 7.12% 3 413 316 2.05% 3 434 964 -0.61%
500 9 546 351 8.95% 9 355 231 4.67% 9 307 510 1.03%

332 S.A. de Carvalho Jr. and S. Rahmann

high number of probes that can be considered for filling the last spots of a quad-
rant. We are planning to implement a similar strategy on Pivot Partitioning that
could improve the quality of our solutions.

7 Summary

We have presented a new partitioning strategy that for the first time combines
the partitioning the chip with embedding of the probes. The main advantages
of our approach over previous methods are: faster and better selection of pivots
used to drive the assignment of probes to subregions; and improved assignment
of probes to regions by considering all valid embeddings of a probe.

Acknowledgments

We thank Ion Mandoiu, Xu Xu and Sherief Reda for providing an implementa-
tion of their algorithms.

References

1. Binder, H., Preibisch, S.: Specific and nonspecific hybridization of oligonucleotide
probes on microarrays. Biophysical Journal (2005) 89 337–352.

2. de Carvalho Jr., S., Rahmann, S.: Microarray Layout as a Quadratic Assignment
Problem. Submitted (2006).

3. Çela,E. (1998) The Quadratic Assignment Problem: Theory and Algorithms.
Kluwer, Massachessets, USA.

4. Chase, P.: Subsequence numbers and logarithmic concavity. Discrete Mathematics
(1976) 16 123–140.

5. Fodor, S., Read, J., Pirrung, M., Stryer, L., Lu, A., Solas, D.: Light-directed,
spatially addressable parallel chemical synthesis. Science (1991) 251 767–73.

6. Hannenhalli, S., Hubell, E., Lipshutz, R., Pevzner, P.: Combinatorial algorithms
for design of DNA arrays. Advances in Biochemical Engineering / Biotechnology
(2002) 77 1–19.

7. Kahng, A., Mandoiu, I., Pevzner, P., Reda, S., Zelikovsky, A.: Border length min-
imization in DNA array design. In Proceedings of the Second Workshop on Algo-
rithms in Bioinformatics (WABI 2002).

8. Kahng, A., Mandoiu, I., Pevzner, P., Reda, S., Zelikovsky, A.: Engineering a scal-
able placement heuristic for DNA probe arrays. Proc. 7th Int’l Conf. on Compu-
tational Molecular Biology RECOMB’03 (2003) 148–156.

9. Kahng, A., Mandoiu, I., Reda, S., Xu, X., Zelikovsky, A.: Evaluation of placement
techniques for DNA probe array layout. Proc. the IEEE/ACM Conf. on Computer-
Aided Design (2003) 262–269.

10. Rahmann, S.: The shortest common supersequence problem in a microarray pro-
duction setting. Proc. 2nd European Conf. on Computational Biology ECCB’03,
Bioinformatics, 19(Suppl. 2):ii156–ii161.

Accelerating the Computation of Elementary

Modes Using Pattern Trees

Marco Terzer and Jörg Stelling

ETH Zurich, Department of Computer Science, 8092 Zurich, Switzerland
{marco.terzer, joerg.stelling}@inf.ethz.ch

Abstract. Elementary flux modes (EFMs)—formalized metabolic
pathways—are central and comprehensive tools for metabolic network
analysis under steady state conditions. They act as a generating basis
for all possible flux distributions and, thus, are a minimal (constructive)
description of the solution space. Algorithms to compute EFMs descend
from computational geometry; they are mostly synonymous to the enu-
meration of extreme rays of polyhedral cones. This problem is combina-
torially complex, and algorithms do not scale well. Here, we introduce
new concepts for the enumeration of adjacent rays, which is one of the
critical and stubborn facets of the algorithms. They rely on variants of k-
d-trees to store and analyze bit sets representing (intermediary) extreme
rays. Bit set trees allow for speed-up of computations primarily for low-
dimensional problems. Extensions to pattern trees to narrow candidate
pairs for adjacency tests scale with problem size, yielding speed-ups on
the order of one magnitude relative to current algorithms. Additionally,
fast algebraic tests can easily be used in the framework. This constitutes
one step towards EFM analysis at the whole-cell level.

1 Introduction

Metabolic networks are characterized by their complexity. Even in simple bacte-
ria, they involve ≈2.000 metabolites and ≈1.000 proteins that catalyze reactions
converting external substrates to metabolites and products. For their computa-
tional analysis, in particular, stoichiometric or constraint-based approaches have
gained popularity because the necessary reaction stoichiometries and reversibili-
ties are usually well–characterized, in contrast to reaction kinetics and associated
parameters [1]. For example, genome–scale stoichiometric models have been con-
structed for several organisms to predict flux distributions in metabolic networks
in normal or perturbed conditions as well as optimality and control thereof [2].

Conceptually, the analysis starts from the m × q stoichiometric matrix N,
where m is the number of (internal) metabolites and q the number of reac-
tions. As metabolism usually operates on faster time–scales than other cellular
processes, we can assume (quasi) steady–state for the metabolic reactions to
derive the fundamental metabolite balancing equation:

N · r = 0 (1)

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 333–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

334 M. Terzer and J. Stelling

where the (q × 1)-vector r represents a flux distribution. Additionally, the reac-
tion rates r are subject to thermodynamic feasibility constraints for irreversible
reactions (into which any reversible reaction can be decomposed):

r ≥ 0 (2)

Eqs. (1) and (2) constrain the solution space for valid reaction fluxes to a con-
vex polyhedral cone P (see Section 2 for formal definitions). Hence, comprehen-
sively analyzing metabolic network behavior amounts to characterizing P [3].
Metabolic pathways such as elementary flux modes (EFMs) or extreme path-
ways, which are minimal, linearly independent flux vectors unique for a given
network, allow for this because they correspond to extreme rays of P [3].

Thus, computation of EFMs is equivalent to the enumeration of the extreme
rays of P , a problem from computational geometry known to be hard for the
general case. Current algorithms are variants of the double description method
(DDM) introduced by Motzkin et al. in 1953 [4]. In particular, the canonical basis
approach [5] and the more efficient nullspace approach [6] are used for EFM
computation. However, no efficient algorithm is known with time complexity
polynomial in the input and output size [7], which currently restricts metabolic
pathway analysis to networks of ≈100 reactions and metabolites [1].

Here, we propose improved algorithms for EFM computation that address the
most critical feature of the DDM, namely the independence tests for (prelimi-
nary) extreme rays. We focus on the nullspace approach, but the concepts are
readily applicable to the canonical form. After giving fundamental definitions
(Section 2) and a detailed description of current algorithms (Section 3), we will
present our new approaches relying on k-d trees (Section 4) and experimental
results showing their significant impact on performance (Section 5).

2 Fundamentals

Definition 1. A nonempty set C of points in an Euclidean space is called a
(convex) cone if λx + μ y ∈ C whenever x, y ∈ C and λ, μ ≥ 0.

Definition 2. A cone P is polyhedral if P = {x |Ax ≥ 0} for some matrix
A, i.e. P is the intersection of finitely many linear half-spaces.

Note that A = [NT ;−NT ; I]T and x = r, with the stoichiometric matrix N ,
identity matrix I to ensure irreversibility constraints, and the flux distribution
r, define the cone in the context of EFM analysis as given by eqs. (1) and (2).

Theorem 1 (Minkowski’s Theorem for Polyhedral Cones). For every
cone P = {x |Ax ≥ 0} there exists some R such that P = {x |x = R c for
some c ≥ 0} is generated by R.

A is called a representation matrix of the polyhedral cone P , R is the generating
matrix for P . Because both A and R describe the same object P , the pair (A, R)
is called double description pair or DD pair [4,7].

Accelerating the Computation of Elementary Modes Using Pattern Trees 335

Definition 3. For any vector x ∈ P , the set Z(x), containing the indices i such
that Ai x = 0, is called the zero set of x.

Definition 4. A vector r is said to be a ray of P if r �= 0 and α r ∈ P for
every α > 0. Two rays r and r′ are said to be equivalent, i.e. r r′, if r = α r′

for some α > 0.

Definition 5. Let r be a ray of P . If one of the following holds, both hold and
r is called an extreme ray:

(a) rank(AZ(r)) = rank(A)− 1
(b) there is no r′ ∈ P with Z(r′) ⊇ Z(r) other than r′ r.

If all columns of R are extreme rays, R is called a minimal generating set for P .

3 Existing Algorithms

3.1 Double Description Method (DDM)

The DDM relies on the definition of adjacent rays that is derived from the
extreme ray definition (5). Thus, there exist two options to ensure adjacency,
(a) sometimes referred to as algebraic adjacency test, (b) as combinatorial test:

Definition 6. Let r and r′ be two extreme rays of P . If one of the following
holds, both hold and r and r′ are said to be adjacent:

(a) rank(AZ(r)∩Z(r′)) = rank(A)− 2
(b) if r′′ ∈ P with Z(r′′) ⊇ Z(r) ∩ Z(r′) then r′′ r or r′′ r′.

The algorithm constructs R from A iteratively as follows:

1. Initialization Step: Since P is pointed, i.e. 0 is an extreme point of P , A has
full rank d, a nonsingular square sub-matrix Ad exists, and (Ad, A

−1
d) is an

initial DD pair. As we will see for the nullspace approach, other initial pairs
are possible.

2. Iteration Step: Assume the DD pair (Aj , Rj) with j inequality constraints
from Ax ≥ 0 already considered. The next DD pair (Aj+1, Rj+1) is achieved
by fulfilling an additional inequality aj+1 := Aj+1 x ≥ 0.

(a) The hyperplane H0
j+1 = {x |Aj+1 x = 0} separates Rj into 3 parts:

i. R0
j , the extreme rays of Rj fulfilling inequality aj+1 with equality,

ii. R+
j ⊆ Rj fulfilling aj+1 with strict inequality and

iii. R−
j ⊆ Rj not fulfilling aj+1.

(b) The matrix Rj+1 is constructed as the union of
i. those extreme rays that still fulfill the new condition (R0

j ∪R+
j)

ii. together with the rays resulting from the intersection of the separat-
ing hyperplane H0

j+1 with the hyperplane through the pair of rays
(r−, r+) where r− ∈ R−

j , r+ ∈ R+
j and r− is adjacent to r+, i.e.

the newly created ray is an extreme ray. This step is also known as
Gaussian elimination with the newly constructed ray r′ in H0

j+1:
r′ = (Aj+1r

+)r− − (Aj+1r
−)r+.

3. Continue with 2 until all inequalities are considered.

336 M. Terzer and J. Stelling

3.2 Binary Nullspace Algorithm

Nullspace approach. Wagner [6] proposed to use a well defined form of the
kernel matrix K of N as an initial minimal representation matrix, where K =
[I; K∗]T . If Nm×q has full rank, i.e. d = rank(N) = m, the kernel matrix
has dimensions q × (q − m) and K∗ consequently m × (q − m). Thus, this
initialization results in (q − m) + 2m = q + m resolved constraints, leaving
m inequalities to be solved in the iteration phase. It can be shown [3] that
(A, K) form an initial DD-pair with K being a minimal generating matrix and
A(q+m)×q =

[
Iq−m0(q−m)×m; N ; −N

]
. The nullspace approach proved to

be faster than the original version, removes redundancies (by the nature of the
kernel matrix), and simplifies the Gaussian elimination step.

Bit sets. Adjacency tests are the most expensive parts of the algorithm. How-
ever, as we only need to know whether or not a ray fulfills a specific inequality
with equality, we can use bit sets to store this information. Corresponding to the
zero sets in definition 3, the bit set zero set of a given vector x at iteration step
j is defined as follows, complementary to [3]:

Definition 7. For any x ∈ Pj, Pj being the polyhedral cone at iteration step j
represented by the double description pair (Rj , Aj), the set

Bj(x) = {r1r2 . . . rj | ri ∈ [0, 1], 1 ≤ i ≤ j} with ri =
{

1 if Ai x = 0
0 otherwise

is called the bit set representation of the zero set of x.

We will use the shorter term zero set subsequently for bit set representation of
the zero set.

The bitwise and operation for zero sets corresponds to the intersection of sets,
because for every bit-position in the bit set, the position in the resulting set is 1
iff the position was 1 in both source sets. Accordingly, the subset (or superset)
operation can be performed by:

B(x) ⊆ B(y) ⇐⇒ B(x) ∧B(y) ≡ B(x) (3)

Proposition 1. To derive the zero set of a vector at iteration j+1, the following
operations are performed:

Bj+1(x) =
{

Bj(x) + 1 if x ∈ R0
j+1

Bj(x) + 0 if x ∈ R+
j+1

(4)

for extreme rays which still fulfill the new equation and are kept, and

Bj+1(x, y) = {Bj(x) ∧Bj(y) + 1 |x ∈ R+
j+1, y ∈ R−

j+1, x adj. to y} (5)

for newly combined rays, where + stands for concatenation, ∧ for the bitwise
and operation.

Accelerating the Computation of Elementary Modes Using Pattern Trees 337

Proof. The proof for (4) and (5) immediately emanates from definition (3).

The bit set representation of zero sets has two main advantages: It demands lit-
tle space in memory, and set operations (bitwise and, subset tests) for adjacency
can be performed efficiently. Moreover, storing only one bit for vector elements
concerning rows in A which have already been processed is sufficient. The num-
ber of zero positions in extreme rays is maximized and the combination of zeros
and non-zeros is unique; thus, the original real-valued rays can be reconstructed
from the bit set extreme rays after the final iteration step [3].

4 New Approaches

4.1 Bit-Set Trees

The bit sets in definition 7 can be seen as k-tuples of [0, 1] values, and thus
search operations on a set of bit sets coincide with queries on a collection of k-
dimensional records. For this purpose, k-d-trees have been invented as a structure
for storage and retrieval of multidimensional (k-dimensional) data [8].

In the context of EFM-computation, we need to test for the existence of a
superset for a given bit set. For 2 adjacent rays r and r′ with corresponding
zero sets B(r) and B(r′), the combinatorial adjacency test as defined in 6(b)
bars the existence of a zero set that is superset of B(r)∩B(r′) other than B(r)
and B(r′). This type of queries can operate on a binary k-d-tree and works
similar to the partial match queries given in [8].

Tree construction. Given a set of bit sets (our zero sets), the algorithm returns
a binary k-d-tree or bit set tree. The input of the algorithm is a set of bit sets,
that is, a collection without duplicates, which conforms to the actual problem.
This simplifies step 2 of the algorithm below, where the bit sets are split into
two newly created leafs, and we can assure that infinite loops are avoided.

main Create a leaf node containing all bit sets and invoke sub with it. The
returned node is the tree’s root r.

sub 1. If the leaf node contains not more elements than some threshold (the
maximum leaf size), return it and continue at invoker.

2. Choose some bit j that has not yet been used on prior levels. Sepa-
rate the leaf’s bit sets and create two new leaf nodes zero and one
containing the bit sets with bitj = 0 and bitj = 1, respectively.

3. Recursively invoke sub with zero and one.
4. Create a new intermediary node i with two children zero and one,

the nodes returned by sub in 3. Return i and continue at invoker.

Superset existence. Given the root r of a bit set tree t constructed as described
above and a bit set s to be tested, where s = s+∩s− with s+ ∈ t and s− ∈ t, the
algorithm returns true if a super set of s is contained in t (other than s+ and s−),
false otherwise (i.e. it returns true iff s+ is adjacent to s−). The functionality
of the algorithm is illustrated in Fig. 1.

338 M. Terzer and J. Stelling

Fig. 1. Superset-Existence algorithm on a bit-set tree/pattern set tree with ternary leafs
and a test bit set s = 010011. Double-lines indicate pointers to child nodes which are
traversed in both tree-variants, dotted lines are traversed in neither of them. Dashed
lines are only traversed in the bit-set tree, single solid lines only in the pattern-tree.
Double-bar arrow-heads highlight truncation by the pattern.

main Invoke sub with the root node r and return the result from that call.

sub 1. If the current node is a leaf, iterate through the leaf’s bit sets and
return true if any of them is a superset of s (not being s+ or s−),
false otherwise.

2. Let si be the bit i of s where i is the bit position corresponding to
the current node (this bit has been used to separate the bit sets in
child node zero from those in one).

3. Invoke sub with one. If true is returned, pass it to the invoker.
4. If si = 0, call sub with zero and return the result, else return false.

Correctness and complexity. By the way of constructing the tree, the zero
child of an intermediary node with selective bit j contains those bit sets that
have bitj = 0. Thus, if the set s to be tested contains j, that is, bitj = 1, the bit
sets in zero cannot be supersets of s and only the bit sets in one are superset
candidates, conforming with the recursion condition in step 4.

We cannot estimate the number of intermediary modes and, thus, the overall
time complexity of the DDM. However, for each step, at least d− 1 inequalities
are fulfilled with equality, where d = rank(A) (definition 5(a)). Since A contains
I, d = q equals the number of irreversible reactions, and due to the nature of the
nullspace, all equality constraints are fulfilled. They correspond to 2m rows in
A with rank m (assuming independent rows in N), thus q− 1−m positions are
left to be fulfilled with equality. That is, the bit sets in t have at least q−m− 1
1-bits, and due to definition 6(a) s at least q −m− 2 respectively. With bit set
length l (q −m ≤ l ≤ q), the probabilities of a 1 in s and in the tree’s bit sets
can be estimated:{

n · q−m−1
l remaining bit sets with probability q−m−2

l

n remaining bit sets with probability 1− q−m−2
l

(6)

Accelerating the Computation of Elementary Modes Using Pattern Trees 339

We assume a well balanced tree of depth log2(n) and set ε1 = q−m−1
l and

ε2 = q−m−2
l . The time complexity at step j is proportional to the number of

considered bit sets per adjacency test, approximated by

n · (1− ε2 + ε1ε2)log2(n) = n1+log2(1−ε2+ε1ε2) (7)

Note that the sublinear function in eq. 7 has an optimum at ε1/2 ≈ 1/2. It is
relatively insensitive to perturbations in ≈ [0.2, 0.8], especially for large n. For
real problems, eq. 7 is a good (and conservative) approximation.

In a well-balanced tree, we have n/2 nodes holding n unary leafs, requiring
c · 2n additional memory space for a total of n intermediary nodes and n leafs,
where c is a small constant. Optimizations could be applied, but these memory
demands are far from being critical for our purposes. In [8], an algorithm is
presented which constructs a balanced tree based on the median of a collection
of elements. With binary values, this approach cannot be applied, but we can
adjust the selective bit at step 2 of the tree construction. Either a static bit order
is calculated before constructing the tree, or the most selective bit is chosen
dynamically when the leaf’s bit-sets are subdivided. We get closer to optimally
balanced trees with dynamic choice, but loose the property of having the same
selective bit for nodes on the same level. Here, we used static and dynamic
heuristics, leaving space for subsequent explorations.

4.2 Pattern Trees

The general idea of pattern trees ties up to the bit set trees, where bit sets
are separated into two child nodes in every intermediary node, taking some
designated selective bit as criterion for partitioning. In pattern trees, additionally,
all intermediary and leaf nodes account for the bit sets of their children by a
union pattern of all bit sets contained in the subtree. At least the selective bits of
the node and its predecessors are common for all bit sets in the subtree. However,
since the actual bit sets constitute only a small fraction of all possible values,
it is likely that other common 0’s will occur in the pattern. This allows a more
restrictive pre-rejection of test sets.

Proposition 2. Let s be a set, E a collection of sets and U = {
⋃

e | e ∈ E} the
union of all sets in E. Then s ⊆ U is a necessary condition for {e | s ⊆ e, e ∈
E} �= ∅, i.e. that a superset of s exists in E.

Proof. If s �⊆ U , s contains at least some j /∈ U . Thus, for all e ∈ E, j /∈ e and
consequently s �⊆ e hold.

Tree construction. In addition to the algorithm for constructing bit set trees,
we calculate the union pattern U when a new leaf node (containing the set E of
bit sets) is created (in main and at step 2) as U = (∨e | e ∈ E) where ∨ stands
for the bitwise or operation.

Superset existence. The algorithm works very similarly to that given for bit
set trees, passing the root node r of a pattern tree. Note that no bit tests are

340 M. Terzer and J. Stelling

performed in step 4 and the recursion is always invoked with both children. Step
1 avoids descending the zero-subtree if the test bit of s was 1 since the pattern
of the zero-child contains 0 at the respective bit position (Fig. 1).

main Invoke sub with the root node r and return the result from that call.
sub 1. If s �⊆ U , U being the union pattern of the node, return false.

2. If the node is a leaf, iterate through the leaf’s bit sets and return
true if a superset of s exists (not being s+ or s−), false otherwise.

3. Invoke sub with one. If true is returned, pass it to the invoker.
4. Invoke sub with zero and return the result.

Correctness and complexity. The only point where we decide to disregard
some superset candidates is at step 1, where sets are excluded if their union
pattern does not fulfill the condition introduced in proposition 2 necessary for
the existence of supersets in the corresponding subtree.

Both time and memory demands for pattern trees are very similar to those of
bit set trees, and it is beyond the scope and objectives of this work to achieve
more precise estimates for time complexity.

4.3 Narrowing Adjacent Pair Candidates

In the previous sections, we have addressed adjacency testing. We will now focus
on narrowing the ray-pairs being candidates for adjacency even before testing.

Proposition 3. Let E1, E2 and E3 be collections of sets with corresponding
union patterns Uj = {

⋃
e | e ∈ Ej , 1 ≤ j ≤ 3}, and let S = {s1 ∩ s2 | s1 ∈

E1, s2 ∈ E2}. Then

∃s3 : s3 ∈ E3 with U1 ∩ U2 ⊆ s3 =⇒ ∃s3 : s3 ∈ E3 with s ⊆ s3 (8)

holds for every s ∈ S.

Proof. By definition, U1∩U2 =
(
(s11∪· · ·∪s1n)∩(s21∪· · ·∪s2m)

)
. Applying the

distributive law, we get
(
(s11∩s21)∪(s11∩s22)∪· · ·∪(s11∩s2m)∪· · ·∪(s1n∩s2m)

)
being the union of all elements of S. Thus, s ⊆ U1 ∩ U2, and consequently
U1 ∩U2 ⊆ U3 =⇒ s ⊆ U3. From this, eq. (8) follows by replacing U3 by s3. If an
s3 exists (left hand of 8), the same s3 exists on the right hand side.

We can use eq. 8 as necessary preconditions for the all-pair combinations. The
success of this shortlisting of candidates highly depends on the relations between
the sets or their union patterns. Higher similarities of patterns U1 and U2 enhance
the probability of the precondition being true, while larger sets E1 and E2 are
more desirable since more pairs could be eliminated. Pattern trees comply with
these requirements well since they constitute subtrees with union patterns. Nodes
in the upper part of the tree have many, but barely similar entries; descending
the tree means lowering the number of entries and increasing the similarity.
This characteristic can be used to find the optimal balance between number and
similarity of entries in a set.

Accelerating the Computation of Elementary Modes Using Pattern Trees 341

Here, we implemented an algorithm that tests the cut-pattern U1 ∩ U2 for
two leaf nodes. We used heuristics to calculate the optimal leaf size, that is
the number of bit sets per leaf, in a manner of statically balancing similarity
and exclusion. Future development should also consider dynamic balancing by
calculating the cut pattern for all nodes, not only leaf nodes, to reject candidates
at different tree levels.

In Fig. 1, the pattern combination of the left-most leaf nodes leads to the
cut-pattern of 000101 (000101 ∧ 001101), for which we find a superset 111101
in the right-most leaf node of the tree. Thus, no pair from the left-most leafs
form an adjacent pair, which has been found by one test instead of four for all
combinations.

Algorithmic extensions. At iteration j of the double description algorithm,
we construct a pattern tree tj as described above with the following extensions:

1. The collections of zero sets in the leafs of the pattern tree are divided into
three subsets S0, S+, and S− corresponding to the separation of the rays by
the hyperplane H0

j at step 2a of the DD-algorithm.

2. We calculate three union patterns for every leaf l:

l.U = {
∨

s | s ∈ l.S0 ∪ l.S+ ∪ l.S−}
l.U+ = {

∨
s | s ∈ l.S+}

l.U− = {
∨

s | s ∈ l.S−}

To create the extreme rays for the next iteration step, we iterate through the
tree’s leafs L, and initialize LA = L.

loopA 1. Choose some leaf lA from LA and initialize LB = LA.
2. Collect the zero sets in S0 and S+ of lA and apply eq. 4.

loopB i. Pick some leaf lB ∈ LB (possibly again lA) and calculate the

cut-patterns
{

C+− = lA.U+ ∧ lB.U−

C−+ = lA.U− ∧ lB.U+

ii. If a superset s for C+− exists in the tree with s �∈ lA.S+, s �∈
lB.S−, no pair (s+

A, s−B) ∈ (lA.S+, lB.S−) is an adjacent pair
according to eq. 8, thus continue at (iv).

iii. Test every pair (s+
A, s−B) ∈ (lA.S+, lB.S−) as usual, i.e. by testing

the intersection s+
A ∧ s−B, and apply eq. 5 for adjacent pairs.

iv. Repeat (ii) and (iii) with C−+ accordingly.
v. Remove lB from LB and continue at loopB if LB is nonempty.

3. Remove lA from LA and continue at loopA if LA is nonempty.

5 Experimental Results

As realistic examples, we used variants of a stoichiometric model for the cen-
tral metabolism of Escherichia coli [9]. Network compression techniques mostly

342 M. Terzer and J. Stelling

Table 1. Computation of the elementary modes for variants of the central metabolism
of Escherichia coli. Abbreviations: Glc = glucose, Ac = acetate, Form = formiate, Eth
= ethanol, Lac = lactate, CO2 = carbon dioxide, Succ = succinate, Glyc = glycerol.
The products considered were Ac, Form, Eth, Lac, CO2. Relative speed figures relate
to the bit set tree version. Note that due to the current implementation, the absolute
time measurements are somewhat above those given in [10].

S0 S1 S2

substrates Suc Glc Glc, Succ, Glyc, Ac
network size 97 × 114 (28 rev.) 97 × 114 (28 rev.) 97 × 118 (28 rev.)
compressed size 34 × 45 (16 rev.) 35 × 46 (17 rev.) 37 × 52 (17 rev.)
iteration steps 28 29 31
elementary modes 7,055 27,100 507,632

time rel. speed time rel. speed time rel. speed
iterate all 6.6s 0.5 453s 0.1 - -
bit set tree 3.6s 1.0 38s 1.0 451min 1.0
pattern tree 3.4s 1.1 28s 1.4 431min 1.1
candidate narrowing 2.6s 1.4 14s 2.7 28min 16.1

identical to those presented in [3] were applied. The algorithm was entirely im-
plemented in Java and the tests were run on a Linux machine with an AMD
Opteron(tm) 250 processor with 2.4 GHz, using a Java 5 virtual machine with
max. 4 GB memory. The results summarized in table 1 show major improve-
ments from the primitive combinatorial adjacency test to those with bit-set or
pattern trees for small problem sizes, where adjacent candidate pair narrowing
yields lower advances. With higher dimensional problems, candidate narrowing
scales much better than merely improving testing and in fact becomes essential
with regard to whole-cell metabolic networks.

6 Conclusions and Prospects

Determining elementary flux modes constitutes an important problem for bioin-
formatics. In addition, it is relevant for other domains of computer science /
applied mathematics due to the nature of the underlying problem: the enumer-
ation of all extreme rays of convex polyhedral cones. In this work, we focused
on one aspect of the double description method that is critical for its perfor-
mance, namely the independence tests for (preliminary) extreme rays. Concep-
tually, we introduced variants of k-d trees—bit-set trees and pattern trees—to
implement the search for a superset of a given test set in the combinatorial ad-
jacency test, and for effectively restricting the search scopes. Implementations
and applications of the algorithms to real-world metabolic networks confirmed
performance gains on the order of one magnitude compared to currently em-
ployed algorithms. In particular, refined searches using pattern trees scale well
with problem size, which is important for ultimately analyzing whole-cell net-
works.

Accelerating the Computation of Elementary Modes Using Pattern Trees 343

In perspective, further improvements are expected by exploiting pattern trees
for pre-rejection of test candidate pairs in a more sophisticated manner, by adap-
tive methods for tree-balancing, and by employing the more efficient rank test for
adjacency that does not depend on the number of modes to be tested. It is quite
simple to combine rank test and candidate narrowing with pattern trees, by de-
manding that cut patterns pass the rank test. All these aspects require further
efforts in theory, for instance, to determine optimal balancing schemes. Port-
ing efficiency-sensitive code parts from Java to a high-performance language will
certainly help fully realize the algorithms’ potential; another relevant and attrac-
tive topic regarding applicability to larger networks is parallelization. Overall, we
anticipate these approaches to finally enable enumeration of elementary modes
for genome-scale metabolic networks. This, of course, still has to be proven.
The subsequent interpretation of huge sets of metabolic pathways is yet another
challenging and interesting problem.

Acknowledgments

We thank Gaston Gonnet for algorithmic ideas and for comments on the
manuscript.

References

1. Klamt, S., Stelling, J.: Stoichiometric and constraint-based modeling. In Szallasi,
Z., Stelling, J., Periwal, V., eds.: System Modeling in Cellular Biology. MIT Press
(Cambridge / MA) (2006) 73–96

2. Price, N., Reed, J., Palsson, B.: Genome-scale models of microbial cells: Evaluating
the consequences of constraints. Nat. Rev. Microbiol. 2 (2004) 886–897

3. Gagneur, J., Klamt, S.: Computation of elementary modes: A unifying framework
and the new binary approach. BMC Bioinformatics 5 (2004) 175

4. Motzkin, T.S., Raiffa, H., Thompson, G., Thrall, R.M.: The double description
method. In Kuhn, H., Tucker, A., eds.: Contributions to the Theory of Games II.
Volume 8 of Annals of Math. Studies., Princeton University Press (Princeton / RI)
(1953) 51–73

5. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction sys-
tems at steady state. J. Biol. Syst. 2 (1994) 165–182

6. Wagner, C.: Nullspace approach to determine the elementary modes of chemical
reaction systems. J. Phys. Chem. B 108 (2004) 2425–2431

7. Fukuda, K., Prodon, A.: Double description method revisited. In: Combinatorics
and Computer Science. (1995) 91–111

8. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18 (1975) 509–517

9. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.: Metabolic network
structure determines key aspects of functionality and regulation. Nature 420 (2002)
190–193

10. Klamt, S., Gagneur, J., von Kamp, A.: Algorithmic approaches for computing
elementary modes in large biochemical reaction networks. IEE Proc. Systems Biol.
152 (2005) 249–55

A Linear-Time Algorithm for Studying Genetic

Variation

Nikola Stojanovic1 and Piotr Berman2

1 Department of Computer Science and Engineering, The University of Texas at
Arlington, Arlington, Texas, USA

2 Department of Computer Science and Engineering, The Pennsylvania State
University, University Park, Pennsylvania, USA

Abstract. The study of variation in DNA sequences, within the frame-
work of phylogeny or population genetics, for instance, is one of the most
important subjects in modern genomics. We here present a new linear-
time algorithm for finding maximal k-regions in alignments of three se-
quences, which can be used for the detection of segments featuring a
certain degree of similarity, as well as the boundaries of distinct genomic
environments such as gene clusters or haplotype blocks. k-regions are
defined as these which have a center sequence whose Hamming distance
from any of the alignment rows is at most k, and their determination in
the general case is known to be NP-hard.

1 Introduction

The characterization of inter and intra-species genetic variation is in the core of
modern genomics. Studies of homologous regions in different species can provide
clues about the evolution, help us identify important loci in human DNA, un-
derstand the regulation of complex genetic traits and describe the small number
of changes in DNA which have led to the development of consciousness and civ-
ilization. The understanding of genetic variation within the human population
would help us understand which features in an individual’s DNA make that in-
dividual more or less susceptible to complex genetic diseases. This would lead to
the development of new treatments, and in particular different treatments likely
to be effective in different individuals.

Each of these issues has been addressed by major initiatives by the US and
other governments, as well as private and nongovernmental organizations. The
ENCODE project [10] has started in September of 2003, with the goal of develop-
ing high-throughput technologies for cataloguing all functional elements in DNA

on a target region comprising approximately 1% of the human genome. The ap-
proach so far included extensive sequencing of homologous regions from a large
number of species, as well as the development of new computational methods
necessary for the analysis of these regions. The HapMap consortium [11] has
concentrated on cataloging and analysis of single nucleotide polymorphisms in
human DNA, looking at a large number of sequences from individuals belong-
ing to diverse ethnic and racial groups. Both the identification of SNPs [12] and

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 344–354, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Linear-Time Algorithm for Studying Genetic Variation 345

the subsequent determination of haplotype boundaries in different populations
required intensive computing and new fast and reliable algorithms [1].

Several years ago, while studying the conservation patterns of short functional
sites in DNA, we formulated the 1-mismatch problem [8], defined as finding a
maximal region in a set of N aligned sequences Si of length L which have a
consensus “center” sequence C whose Hamming distance from each of the Si,
d(Si, C), is at most 1. We have shown that 1-mismatch problem has a solution
running in time O(NL). A natural generalization of this problem is a k-mismatch
problem, where d(Si, C) ≤ k, for any fixed k > 0 and all i ∈ [1, N]. However, in
the context of the search for regulatory sites in DNA the k-mismatch problem
was of lesser interest, as such sites are usually short, ranging between 5 and
25 bases in length. Even as DNA binding proteins are non-specific, interacting
with sequences which can have very different composition [2], it is probably not
productive to look for more than 1 mismatch per site/sequence in the context of
short sites within multiple alignments. However, for other types of problems in-
volving genetic variation, such as the determination of the boundaries of genomic
regions, the k-mismatch approach would be appropriate.

The general k-mismatch problem is NP-hard, as shown by independent studies
in the coding theory [3], follow-up work on our original paper by other groups [6]
[7], and our own analysis (unpublished). In particular, the report in [6] has
devised an approximation scheme for this problem. In this paper we show that
an important sub-class of the k-mismatch problem, when a Hamming center
of exactly 3 sequences is sought, has a linear-time solution1. As simultaneous
consideration of 3 sequences is often an issue in computational biology (two
species in a study, plus an outgroup, for instance) an efficient algorithm for this
special case can be of substantial interest. Moreover, since the solution to this
problem leads to plausible ancestral sequences it can be used as an aid in finding
them as a part of an initiative such as one currently taking place within the
framework of the UCSC Genome Browser [4].

2 Algorithm

When three sequences are compared and placed in an alignment, it can have
only five possible types of columns: trivial columns are these which contain
occurrences of one character in all rows, and nontrivial columns contain at least
two different symbols. Among the latter, it is possible that all three characters in
the column are different (we refer to these as type 0 columns) or it may be that
two characters are same (so we call it the majority character) and one occurs
only once (minority character). If the minority character is in alignment row 1,
we call that column type 1; if it is in row 2, it is type 2; finally, if it is in row 3,
we call it type 3. By keeping track of the number of columns of each type seen in
an interval, it is possible to calculate the distribution of their center characters

1 After an alignment of these sequences has been built, and not counting the time
necessary for reporting the overlapping center sequences.

346 N. Stojanovic and P. Berman

Table 1. Symbols and variables used in the description of the algorithm

Symbol Meaning
n Total length of the 3-sequence alignment
ni Number of columns of type i, i ∈ [0, 3]
N Set of all ni

mj Number of mismatches alignment row j has with the center, j ∈ [1, 3]

rj
0 Number of type 0 columns whose center is from row j, j ∈ [1, 3]

ri Number of type i (i ∈ [1, 3]) columns with minority character at center

R Set of all rj
0 and ri

start Beginning of the currently considered interval
stop End of the currently considered interval (column to the right)
bound Position which terminated the last reported k-region

so that they create a center sequence for the region, or conclude that a center
does not exist, i.e., that the interval is not a k-region.

We shall refer to a consecutive run between alignment columns a and b, in-
clusive, as to interval [a, b]. Within an interval we shall denote the number of
columns of type 0, 1, 2 and 3 by n0, n1, n2 and n3, respectively. We shall re-
fer to all ni as set N . The number of mismatches alignment rows 1, 2 and 3
have with the center sequence in the current interval will be denoted by m1, m2

and m3, respectively. We shall use symbols rj
0, j ∈ [1, 3] to denote the number

of type 0 columns whose center is from row j and ri, i ∈ [1, 3] to denote the
number of type i columns whose center is the minority character. All rj

0 and
ri values will be referred to as set R. Finally, we have referred to the length
of the sequences under consideration as L (or rather Lj), but since we are in-
terested in the length of their alignment, i.e., its total number of columns, we
shall denote it by n. This notation is summarized in Table 1. The algorithm for
locating all maximal k-regions in three aligned sequences is based on the idea
that one can proceed through the alignment, from a specified starting point,
keeping track of the number of nontrivial columns of each type seen between the
start and the current position, and assign center characters to the columns in
accordance with the following scheme: for trivial columns, center is always the
unique character of the column; for columns of type 0 we choose the character
in row 1, and for columns of type 1, 2 and 3 we choose the majority character.
This process can continue until some row accumulates k + 1 mismatches with
the tentative center. At that point, a re-distribution of center characters has to
be done.

According to the scheme, m1 = n1 (the number of type 1 columns). If m1 > k,
then some type 1 columns have to have the minority character elected. As each
selection of row 1 character for the center of a type 1 column causes an additional
mismatch with both rows 2 and 3, this process can be done only as long as
both m2 ≤ k and m3 ≤ k. In this case the search for the end of the current
maximal k-region can proceed, otherwise the region concluded and it can be
reported.

A Linear-Time Algorithm for Studying Genetic Variation 347

Algorithm 2.1: K3(Al,n, k, threshold)

start ← 1; stop ← 0; bound ← 0
n0 ← 0; n1 ← 0; n2 ← 0; n3 ← 0
while bound < n + 1

do

if stop = n + 1
then halt ← true
else halt ← CALCULATE SCORES(N ,R, k)

if halt = true

then

if stop − start + 1 > threshold and stop > bound (1)
then REPORT REGION(Al, start, stop,R) (2)

bound ← stop
repeat
next ← ADVANCE START(Al,N , start)

until next �= TRIVIAL

else
repeat
next ← ADVANCE STOP(Al,N , stop)

until next �= TRIVIAL

Fig. 1. Pseudocode for the K3 main loop. The program receives the alignment Al,
its length n, the number of permitted mismatches k, and the threshold length of the
regions to be reported. Other variables are as described in the text.

The situation is more complex if m2 > k or m3 > k when, under the original
scheme, m2 = n0 + n2 and m3 = n0 + n3. Without the loss of generality, we
shall consider the case of row 2, as the other is symmetrical. As n0 + n2 > k
the number of mismatches caused by columns of either type 0 or 2 has to de-
crease, if possible. Decreasing the number of mismatches in columns of type 2
would introduce additional mismatches with both row 1 and row 3, while de-
creasing the number of mismatches in columns of type 0 would increase m1 only
(as row 3 already has a mismatch there), so we proceed by electing characters
from row 2 as centers of these columns, as long as necessary, and possible. It
stops being possible when either m1 > k, when there is no way to extend the
current maximal k–region, or the character from row 2 has been elected center
of all n0 type 0 columns. In the latter case, and if it is still m2 > k (for the
revised center), the minority character of type 2 columns has to be selected in
as many of them as necessary. Since it introduces a corresponding number of
new mismatches with both rows 1 and 3, it is possible to be done as long as
both m1 ≤ k and m3 ≤ k. If this does not hold then the region cannot be ex-
tended, and it can be reported, otherwise we continue scanning the alignment
for an extension with the revised center sequence. Once the default settings have
been modified it would be cumbersome to maintain the distribution of center
characters and revise it every time a new nontrivial column is seen. It is much
simpler to re-calculate the distribution of the characters for each column type
every time when it is determined that a center exists for the current region, and
then use the calculated numbers for reporting the sequence. This approach is

348 N. Stojanovic and P. Berman

Algorithm 2.2: CALCULATE SCORES(N ,R, k)

halt ← false
if n1 > k and (n0 + n2 ≥ k or n0 + n3 ≥ k)
then halt ← true
else if n1 ≤ k and n0 + n2 ≤ k and n0 + n3 ≤ k
then RESET(N ,R)
else if n1 > k

then

if n1 − k > k − n0 − n2 or n1 − k > k − n0 − n3

then halt ← true

else
RESET(N ,R)
r1 ← n1 − k

else if n0 + n2 > k and n0 + n3 > k

then

if n0 + n2 − k + n0 + n3 − k > n0

then halt ← true
else if n1 + n0 + n2 − k + n0 + n3 − k > k
then halt ← true

else

RESET(N ,R)
r1
0 ← 2k − n0 − n2 − n3

r2
0 ← n0 + n2 − k

r3
0 ← n0 + n3 − k

else if n0 + n2 > k

then

if n0 + n2 − k > k − n1

then halt ← true
else if n2 ≤ k

then
RESET(N ,R)
r1
0 ← k − n2; r

2
0 ← n0 + n2 − k

else if n2 − k > k − n0 − n3

then halt ← true

else
RESET(N ,R)
r1
0 ← 0; r2

0 ← n0; r2 ← n2 − k

else

if n0 + n3 − k > k − n1

then halt ← true
else if n3 ≤ k

then
RESET(N ,R)
r1
0 ← k − n3; r

3
0 ← n0 + n3 − k

else if n3 − k > k − n0 − n2

then halt ← true

else
RESET(N ,R)
r1
0 ← 0; r3

0 ← n0; r3 ← n3 − k
return (halt)

Fig. 2. Pseudocode for CALCULATE SCORES function, returning the value of halt
as either false or true, depending on whether the current k-region can be extended
with the current position (alignment column) or not. If the k-region is extended, it also
recalculates the distribution of the characters in the center sequence.

A Linear-Time Algorithm for Studying Genetic Variation 349

implemented by procedure K3, whose pseudocode is given in Figure 1, and its
supplementary routines, CALCULATE SCORES, shown in Figure 2, and RESET,
ADVANCE START, ADVANCE STOP and REPORT REGION. The last four pro-
cedures are simple, so we shall omit their pseudocode. Briefly, ADVANCE START

and ADVANCE STOP move the current region starting and ending column, re-
spectively, and update the values of N depending on the type of the encountered
column. RESET sets the values of R, r1

0 to n0 and all others to 0.
The calculation of the values from the set R is not strictly a part of the

determination of the boundaries of maximal k-regions, but they facilitate the
reporting, if we are interested in the actual center sequences rather than just their
boundaries. This is done by the procedure REPORT REGION, whose pseudocode
is omitted as relatively straightforward.

The main loop of the K3 algorithm scans through the alignment, attempting to
extend the k-region starting at the current start position, until it is not possible
any more. At that point the newly discovered maximal k-region is reported, if
it satisfies other criteria, such as the minimal reportable length. After that, it
moves the start to the first possible starting position for the next k-region. In
doing this the use of CALCULATE SCORES, implementing the scheme described
above, is instrumental. In addition to estimating whether the new (nontrivial)
column can be added to the current k-region, this function also recalculates
the allocation of the column-to-center characters, to be used in reporting. In
an implementation, the alignment can also be extended by artificial columns at
positions 0 and n + 1, which makes reasoning easier.

2.1 Algorithm Correctness

In order to prove the algorithm correct, we must show that it reports all maximal
k-regions in the alignment only once, and that only such regions are reported.
We start by briefly arguing several properties of K3, as their full formal proofs
would be too long to be discussed here:

1. The interval between start and stop is different in every iteration of K3. The
first column to the left of the start (if any, and if start is not set beyond the
end of the alignment) is nontrivial, as well as one at the stop position.
Rationale: Every iteration of K3 advances either start or stop, so the in-
terval between them must be different in every iteration. Loops advancing
start and stop halt only when they pass (start) or get positioned at (stop)
a nontrivial column.

2. Counters n0, n1, n2 and n3 always contain the correct number of columns
of types 0, 1, 2 and 3, respectively, in [start, stop].
Rationale: Trivial. These counts are updated by ADVANCE START and
ADVANCE STOP, which keep track of the type of the current column.

3. If the value of halt determined by CALCULATE SCORES is false, then there
exists a k-region containing all columns in [start, stop].
Rationale: By the scheme applied, if CALCULATE SCORES returned false
it means that it could find a satisfactory center assignment.

350 N. Stojanovic and P. Berman

4. If the value of halt determined by CALCULATE SCORES is true then there
does not exist a k-region containing all columns in [start, stop].
Rationale: Same as above. If halt was set to true, a satisfying assignment
of center letters could not have been found.

Since the first statement procedure K3 reaches after halt becomes true is
that in line (1) it follows that if start < stop when (1) is reached the interval
[start, stop− 1] is indeed a k-region. Moreover, it is right-maximal, in the sense
that it cannot be extended by adding more columns to its right end.

Not every column of the alignment can start a maximal k-region: it can be
either trivial or non-trivial, but, unless it is the very first one in the alignment,
it has to be immediately to the right of a nontrivial column. We refer to these as
region-starting columns, and proceed to show that each such column is indeed
considered by K3 as a potential start.

Lemma 1. Every region-starting column, except these to the right of the start
at the time bound becomes n+1, is at a position pointed to by start exactly once
when the algorithm reaches line (1) of procedure K3.

Proof. We prove this by induction on the number of times line (1) is reached.
Induction base Line (1) cannot be reached unless halt = true, however start
cannot be increased before halt becomes true. Therefore the first column of the
alignment is pointed to by the start variable the first time line (1) is reached.
As start immediately increases for at least one position, and never decreases, it
cannot point to the first column at any later time.

Induction hypothesis. Assume that when line (1) is reached the mth time start
already pointed (once) to the first m region-starting columns. Assume further
that this iteration of K3 does not set bound to n+1. It has to be shown that this
implies that next time line (1) is reached start must point to the region-starting
column m + 1, and that start will never point to that column afterwards.

Induction step. As start is increased in the same iteration when line (1) is
reached, the mth region-starting column can never be at the start position again.
As soon as start passes over a non-trivial column (or reaches the alignment end)
it stops increasing, thus the next column it gets positioned to is exactly one that
has a nontrivial column to its left, i.e., it is region-starting. If it is immediately
to the right of the one previously pointed to by start, then it is obviously the
next, otherwise the mth region-starting column must have been trivial, possibly
followed by a run of other trivial columns, so the nontrivial column skipped was
not region-starting. In consequence, the column to which start is positioned in
the same iteration when line (1) was reached for the mth time is exactly the
next region-starting one. Variable start will remain unchanged in all iterations
in which halt = false, so the next time line (1) is reached it will still point to
the region-starting column m + 1. As start then immediately increases, it will
never point to this column again.

Lemma 2. Every maximal k-region in the alignment equals [start, stop − 1]
exactly once when the algorithm reaches line (1) of procedure K3.

A Linear-Time Algorithm for Studying Genetic Variation 351

Proof. Assume the opposite, i.e., that there is a maximal k-region R which is
never equal to [start, stop− 1] when line (1) is reached.

A maximal k-region must start at a region-starting column, each being pointed
to by start exactly once when line (1) is reached, by Lemma 1. Thus it must
also hold for the column which starts R. If R is not equal to [start, stop − 1], it
must either be properly contained in this interval or properly contain it.

If R is contained in [start, stop−1] then it cannot be a maximal k-region. If R
properly contains [start, stop−1] then, as start points to the starting column of
R, it must be that it contains the column pointed to by stop. However, line (1)
cannot be reached if halt �= true, and if it is true then [start, stop] cannot be a
k-region (due to the impossible-to-resolve last column). It follows that R, which
is at least equal to [start, stop] cannot be a k-region—a contradiction.

Lemma 3. Every maximal k-region in the alignment which is at least as wide
as the threshold is reported by the algorithm exactly once.

Proof. By Lemma 2, every maximal k-region in the alignment is equal to the
interval [start, stop− 1] exactly once when the algorithm reaches line (1) of K3.
If its length is at least equal to threshold then it would pass the first condition
in that line, so it will be reported if stop > bound. It thus has to be shown that
this condition holds for every maximal k-region.

The value of bound is set after line (1) executes. Thus if bound ≥ stop at
the time the algorithm reaches line (1) with a new interval, then there was
some interval [b, e], where b ≤ start and e ≥ stop, which reached line (1) in some
previous iteration, as [start, stop] at that time, and it must have been a k-region,
too. The current interval [start, stop− 1] is equal or contained in [b, e− 1] and,
by Lemma 1, it cannot be equal, so then it cannot be maximal. Therefore, if the
current interval [start, stop − 1] is a maximal k-region then bound < stop, and
the second condition in line (1) must pass.

By Lemma 2 for every maximal k-region in the alignment line (1) is indeed
reached, and if its length is at least equal to threshold both conditions there
must pass, thus every such region is reported. As every region-starting column
is pointed to by start exactly once when lines (1)–(2) are reached, by Lemma 1,
we conclude that every such region is reported only once.

Lemma 4. Only maximal k-regions whose length is greater than threshold are
reported by the algorithm.

Proof. The first condition in line (1) assures that nothing shorter than threshold
is reported, and by observations 3. and 4. above if start < stop then [start, stop−
1] must be a k-region. It remains to be shown that no k-region properly contained
in another is reported.

Assume the opposite, i.e., that there is a k-region [b, e] which is not maximal,
and is yet reported by the algorithm. Interval [b, e] is then a proper subinterval of
some maximal k-region [b′, e′], where b′ ≤ b and e ≤ e′. In order to be reported,
[b, e] must reach line (1) of K3 as [start, stop − 1]. Both [b, e] and [b′, e′] are k-
regions and they must start with a region-starting column. As b′ ≤ b, by Lemma

352 N. Stojanovic and P. Berman

1 b′ must have been pointed to by start either now or at some earlier time. If
it is now it must also be e = e′ as the current region cannot be extended to
the right. In the latter case, by Lemma 2 at that time it must have been that
[start, stop − 1] was exactly [b′, e′], setting bound to e′ + 1. The value of bound
can never decrease, as stop can never decrease, thus it must be at least e′ + 1
at the time [b, e] is to be reported. However, as bound ≥ e′ + 1 ≥ e + 1 = stop
it follows that the second condition in line (1) must fail now, preventing the
reporting of [b, e], which contradicts the assumption.

We shall omit the proof that the reported center sequence is correct, and instead
state some observations to that effect:

1. Line (2) of procedure K3 cannot be reached in two successive iterations.
Moreover, every time line (2) is reached it must be halt = true, and it must
have became false at least once between two executions of line (2).

2. If CALCULATE SCORES sets halt = false, then the R variables are set to
provide a possible center sequence for the k-region contained in [start, stop).

3. Every time the reporting is done, the R variables contain a correct dis-
tribution for the choice of center characters of nontrivial columns, leading
to a possible center sequence for the k-region starting at start and ending
immediately to the left of stop.

Theorem 1. The algorithm implemented by procedure K3 is correct.

Proof. Lemma 3 guarantees that every maximal k-region in the alignment which
is at least as wide as the threshold is reported exactly once. By Lemma 4 only
these regions are reported and from the observation 3 above it follows that a
plausible center sequence is generated, too. We thus conclude that the algorithm
implemented by procedure K3 is correct.

2.2 Algorithm Performance

Time complexity. Procedure CALCULATE SCORES and all supplementary code
execute in constant time. Procedure K3 executes in a loop which has either
start or stop advanced in every iteration. Variable start can never assume value
greater than stop + 1, as stop always points to a non-trivial (or artificial 0 or
n+1) column, terminating the advancement of start even if it reached it. As the
start shift always enables further search for the next k-region, it has to eventually
cause the advancement of stop. In consequence, the K3 loop cannot execute more
than 2n + 2 times (and it must terminate when stop becomes n + 1). Thus the
total time complexity of the algorithm, without center reporting, is Θ(n).

With reporting, a factor encountering for the output of the centers of the
alignment columns from overlapping k-regions, within the areas of overlap, must
be added. A single report can take Θ(n) time, however no single column can
be reported more than 3k + 1 times as a part of any maximal k-region. This
is because all such regions must be distinct, and no one can contain more than
3k non-trivial columns. When scanning the alignment left-to-right all trivial

A Linear-Time Algorithm for Studying Genetic Variation 353

columns at the left end of the previous reported k-region cannot be contained
in the next, and thus they cannot be included in more than p+1 reports, where
p is the number of maximal k-regions which include the nontrivial column at
the right flank of the run of trivial columns. The total cumulative time with
the reporting is thus of O(kn). This estimate applies to the setting when an
alignment of the sequences in the input has already been built.

Space requirements. Except the alignment itself, all variables used by the algo-
rithm are scalar, thus the program has only constant extra space requirements.

3 Applications

In this work we have concentrated on the core algorithm for the 3-way k-
mismatch restriction, rather than on its applications. We are currently working
on the study of several genomic regions using the software based on this algo-
rithm, and these findings will be reported in a future manuscript. However, in
order to estimate the effectiveness of this approach we have preliminary ran the
software implementing the K3 algorithm on a 3-way alignment of HoxA region
in human, mouse and cow genomes.

Hox genes code for transcription factors involved in the early vertebrate devel-
opment, and they are well conserved throughout the evolution. Actually, several
regions from Hox are known to be ultra-conserved in vertebrates [5], and as
such they feature multiple long k-regions, for very small k. We have run our
software on HoxA with k varying between 1 and 5, looking for regions of min-
imal length between 150 and 400 base pairs. The results were consistent with
our previous analysis by other methods, published elsewhere [9], in that, some-
what surprisingly, the conservation appears to be the best in several 5′ UTRs
of Hox genes. Indeed, although long 3, 4 and 5-regions were present in front of,
within and 3′ to HoxA5 gene, its upstream sequence (plus the start of exon 1)
featured the strongest conservation, including 2 overlapping 1-regions of more
than 300 bp. 3-regions of more than 300 bp have also been found similarly po-
sitioned to HoxA6 and several long 4 and 5-regions overlapped the first exon of
HoxA11.

This study served more to demonstrate the workings of the K3 algorithm
than to lead to biological discovery. Yet it has shown that K3 can be effective in
discovering segments whose conservation need not be obvious, for larger values
of k.

Another notable feature of Hox regions is the remarkable absence of repeated
sequences common almost everywhere else in the human and other genomes,
including the areas immediately flanking Hox (unpublished study by Ken De-
war, personal communication). This results in a dramatic change of the overall
conservation patterns inside and outside Hox clusters, which can be effectively
captured by this algorithm. In general, it promises to be useful when region
boundaries need to be determined, such as in the location of haplotype blocks.
For such applications one would often need to combine the centers from multiple
3-sequence sets, and we are currently developing methods for doing that.

354 N. Stojanovic and P. Berman

Acknowledgments

The ideas described in this manuscript have matured through discussions with
Dr. Webb Miller of Penn State University. The sequences we have used have
been collected and aligned by Dr. Ken Dewar of McGill University and Genome
Quebec Innovation Centre. The authors would like to thank both for their help.

References

1. D.C. Crawford and D.A. Nickerson. Definition and clinical importance of haplo-
types. Ann. Rev. Med., 56:303–320, 2005.

2. J.P. Balhoff and G.A. Wray. Evolutionary analysis of the well characterized endo16
promoter reveals substantial variation within functional sites. PNAS, 102:8591–
8596, 2005.

3. M. Frances and A. Litman. On covering problems of codes. Theory of Computing
Systems, 30:113–119, 1997.

4. A.S. Hinrichs, D. Karolchik, R. Baertsch et al. The UCSC Genome Browser Data-
base: update 2006. Nucleic Acids Res., 34:D590–D598, 2006.

5. A.P. Lee, E.G. Koh, A. Tay, S. Brenner and B. Venkatesh. Highly conserved syn-
tenic blocks at the vertebrate Hox loci and conserved regulatory elements within
and outside Hox gene clusters. PNAS, 103:6994–6999, 2006.

6. M. Li, B. Ma and L. Wang. Finding Similar Regions in Many Strings. Proc. of the
31st ACM Symp. on Theory of Computing STOC’99, ACM Press, 473–482, 1999.

7. M. Li, B. Ma and L. Wang. On the Closest String and Substring Problems. J.
ACM, 49:157–171, 2002.

8. N. Stojanovic, P. Berman, D. Gumucio, R. Hardison and W. Miller. A linear–time
algorithm for the 1–mismatch problem. Proc. 5th Workshop on Algorithms and
Data Structures WADS’97, Springer LNCS 1272, 126–135, 1997.

9. N. Stojanovic and K. Dewar. A Probabilistic Approach to the Assessment of Phy-
logenetic Conservation in Mammalian Hox Gene Clusters. Proc. BIOINFO 2005,
Int’l Joint Conf. of InCoB, AASBi and KSBI, 118–123, 2005.

10. The ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Ele-
ments) Project. Science, 306:636–640, 2004.

11. The International HapMap Consortium. A haplotype map of the human genome.
Nature, 437:1299–1320, 2005.

12. The International SNP Map Working Group. A map of human genome sequence
variation containing 1.42 million single nucleotide polymorphisms. Nature, 409:928–
933, 2001.

New Constructive Heuristics for DNA

Sequencing by Hybridization�

Christian Blum		 and Mateu Yábar Vallès

ALBCOM, Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain

cblum@lsi.upc.edu

Abstract. Deoxyribonucleic acid (DNA) sequencing is an important
task in computational biology. In recent years the specific problem of
DNA sequencing by hybridization has attracted quite a lot of interest
in the optimization community. However, in contrast to the develop-
ment of metaheuristics, the work on simple constructive heuristics hardly
received any attention. This is despite the fact that well-working con-
structive heuristics are often an essential component of succesful meta-
heuristics. It is exactly this lack of constructive heuristics that motivated
the work presented in this paper. The results of our best constructive
heuristic are comparable to the results of the best available metaheuris-
tics, while using less computational resources.

1 Introduction

Deoxyribonucleic acid (DNA) is a molecule that contains the genetic instructions
for the biological development of all cellular forms of life. Each DNA molecule
consists of two (complementary) sequences of four different nucleotide bases,
namely adenine (A), cytosine (C), guanine (G), and thymine (T). In mathe-
matical terms each of these sequences can be represented as a word from the
alphabet {A, C, G, T}. One of the most important problems in computational
biology consists in determining the exact structure of a DNA molecule, called
DNA sequencing. This is not an easy task, because the nucleotide base sequences
of a DNA molecule (henceforth called DNA strands or sequences) are usually
so large that they cannot be read in one piece. In 1977, 24 years after the dis-
covery of DNA, two separate methods for DNA sequencing were developed: the
chain termination method and the chemical degradation method. Later, in the
late 1980’s, an alternative and much faster method called DNA sequencing by
hybridization was developed (see [1,2,3]).

DNA sequencing by hybridization works roughly as follows. The first phase
of the method consists of a chemical experiment which requires a so-called DNA

� Work supported by the Spanish CICYT project OPLINK (grant TIN-2005-08818-
C04-01) and by the “Juan de la Cierva” program of the Spanish Ministry of Science
and Technology.

�� Corresponding author.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 355–365, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

356 C. Blum and M.Y. Vallès

array. A DNA array is a two-dimensional grid whose cells typically contain all
possible DNA strands—called probes—of equal length l. After the generation
of the DNA array, the chemical experiment is started. It consists of bringing
together the DNA array with many copies of the DNA sequence to be read,
also called the target sequence. Hereby, the target sequence might react with a
probe on the DNA array if and only if the probe is a subsequence of the target
sequence. Such a reaction is called hybridization. After the experiment the DNA
array allows the identification of the probes that reacted with target sequences.
This subset of probes is called the spectrum. Two types of errors may occur
during the hybridization experiment:

1. Negative errors: Some probes that should be in the spectrum (because
they appear in the target sequence) do not appear in the spectrum. A par-
ticular type of negative error is caused by the multiple existence of a probe
in the target sequence. This cannot be detected by the hybridization exper-
iment. Such a probe will appear at most once in the spectrum.

2. Positive errors: A probe of the spectrum that does not appear in the target
sequence is called a positive error.

Given the spectrum, the second phase of DNA sequencing by hybridization con-
sists in the reconstruction of the target sequence from the spectrum. Let us, for
a moment, assume that the obtained spectrum is perfect, that is, free of errors.
In this case, the original sequence can be reconstructed in polynomial time with
an algorithm proposed by Pevzner in [4]. However, as the generated spectra gen-
erally contain negative as well as positive errors, the perfect reconstruction of
the target sequence is in general impossible.

1.1 DNA Sequencing by Hybridization

The computational part of DNA sequencing by hybridization can be modelled
as follows (see [5]). Let the target sequence be denoted by st. The number of nu-
cleotide bases of st shall be denoted by n (i.e., st ∈ {A, C, G, T}n). Furthermore,
the spectrum—as obtained by the hybridization experiment—is denoted by S.
Remember that each s ∈ S is an oligonucleotide (i.e., a short DNA strand) of
length l (i.e., s ∈ {A, C, G, T}l). In general, the length of any oligonucleotide s
is denoted by l(s). Let G = (V, A) be the completely connected directed graph
defined by V = S. To each link as,s′ ∈ A is assigned a weight os,s′ , which is
defined as the length of the longest DNA strand that is a suffix of s and a prefix
of s′. A directed Hamiltonian path p in G is a directed path without loops. The
length of such a path p, denoted by l(p), is defined as the number of vertices
(i.e., oligonucleotides) on the path. In the following we denote by p[i] the i-th
vertex in a given path p (starting from position 1). In contrast to the length, the
cost of a path p is defined as follows:

c(p) ← l(p) · l −
l(p)−1∑

i=1

op[i],p[i+1] (1)

New Constructive Heuristics for DNA Sequencing by Hybridization 357

ACT TGA

GAC CTC

TAA

(a) Completely connected di-
rected graph.

A C T G A C T C
A C T G A C T C
A C T G A C T C
A C T G A C T C

A C T G A C T C

(b) DNA sequence retrieval
from a Hamlitonian path.

Fig. 1. (a) The completely connected directed graph with spectrum S =
{ACT,TGA,GAC,CTC,TAA} as the vertex set. The edge weights (i.e., overlaps)
are not indicated for readability reasons. For example, the weight on the edge from
TGA to GAC is 2, because GA is the longest DNA strand that is a suffix of TGA
and a prefix of GAC. In (b) is shown how to retrieve the DNA sequence that is encoded
by the optimal path p∗ = 〈ACT,TGA,GAC,CTC〉. Note that c(p∗) = 8.

The first term sums up the length of the olionucleotides on the path, and the sec-
ond term (which is substracted from the first one) sums up the overlaps between
the neighboring oligonucleotides on p. In fact, c(p) is equivalent to the length
of the DNA sequence that is obtained by the sequence of oligonucleotides in p.
The problem of DNA sequencing by hybridization consists of finding a directed
Hamiltonian path p∗ in G with l(p∗) ≥ l(p) for all possible paths p that fulfill
c(p) ≤ n. In other words, we aim to find a path p that contains as many oligonu-
cleotides as possible (while respecting the length restriction on the resulting DNA
sequence). In the following we refer to this NP -hard optimization problem as
sequencing by hybridization (SBH). It can be shown that exist optimal solutions
to this problem that have a high probability to resemble the target sequence.

As an example consider the target sequence st = ACTGACTC. Assum-
ing l = 3, the ideal spectrum is {ACT,CTG,TGA,GAC,ACT,CTC}. Let
us assume that the hybridization experiment provides us with the following
faulty spectrum S = {ACT,TGA,GAC,CTC,TAA}. See Figure 1(a) for the
corresponding graph G. This spectrum has two negative errors, because ACT
should appear twice, but can—due to the characteristics of the hybridization
experiment—only appear once, and CTG does not appear at all in S. Further-
more, S has one positive error, because it includes oligonucleotide TAA, which
does not appear in the target sequence. An optimal Hamiltonian path in G is
p∗ = 〈ACT,TGA,GAC,CTC〉 with l(p∗) = 4 and c(p∗) = 8. The DNA se-
quence that is retrieved from this path is ACTGACTC (see Figure 1(b)). This
sequence is equal to the target sequence.

1.2 Existing Approaches

The first approach to solve the SBH problem was a branch & bound method pro-
posed in [5]. However, this approach becomes unpractical with growing problem

358 C. Blum and M.Y. Vallès

size. For example, the algorithm was only able to solve 1 out of 40 different
problem instances concerning target sequences with 200 nucleotide bases within
one hour. Another argument against this branch & bound algorithm is the fact
that an optimal solution to the SBH problem does not necessarily provide a
DNA sequence that is equal to the target sequence. This means that the im-
portance of finding optimal solutions is not the same as for other optimization
problems. Therefore, the research community has focused on (meta-)heuristic
techniques for tackling the SBH problem. In addition to two constructive heuris-
tics (see [5,6]), tabu and scatter search approaches [7,8,9] as well as evolutionary
algorithms [9,10,11,12,13] were developed. Moreover, a GRASP method pro-
posed in [14] deals with an easier version of the problem in which the first
oligonucleotide of each target sequence is given.

The organization of the paper is as follows. In Section 2 we describe our
constructive heuristics, and in Section 3 we conduct an experimental evaluation
of these heuristics and compare them to the best techniques from the literature.
Finally, in Section 4 we offer conclusions and an outlook to the future.

2 New Constructive Heuristics

In this section we first deal with a simple greedy technique from the literature
(see [5]). Then, we propose a sensible extension of this heuristic. Finally, we
present a conceptionally new heuristic that is based on merging sub-sequences.
Before we start the description of the heuristics we introduce some notation. In
particular we use

pre(s)← argmax{os′,s | s′ ∈ Ŝ, s′ �= s} , (2)

suc(s)← argmax{os,s′ | s′ ∈ Ŝ, s′ �= s} , (3)

where Ŝ ⊆ S and s ∈ Ŝ are given. In words, pre(s) is the best available prede-
cessor for s in Ŝ, that is, the oligonucleotide that—as a predecessor of s—has
the biggest overlap with s. Accordingly, suc(s) is the best available successor for
s in Ŝ. In case of ties, the first one that is found is taken.

LAG (see [5]): Given a graph G and the length n of a target sequence as in-
put, LAG works as shown in Algorithm 1. The construction of a path p in
graph G starts by choosing one of the oligonucleotides from S in function
Choose Initial Oligonulceotide(S). In subsequent construction steps p is extended
by appending exactly one oligonucleotide. Finally, the solution construction stops
as soon as c(p) ≥ n, that is, when the DNA sequence derived from the con-
structed path p is at least as long as the target sequence. In case c(p) > n,
function Find Best Subpath(p) searches for the longest (in terms of the number
of oligonucleotdes) subpath p′ of p such that c(p) ≤ n, and replaces p by p′.

In the original version of LAG as presented in [5], the function Choose Ini-
tial Oligonulceotide(S) chooses a random vertex for starting the path construc-
tion. However, in this paper we implemented this function as follows. First, set

New Constructive Heuristics for DNA Sequencing by Hybridization 359

Algorithm 1. The LAG heuristic
1: input: A graph G, and the length of the target sequence n
2: s∗ ← Choose Initial Oligonulceotide(S)
3: p ← 〈s∗〉
4: Ŝ ← S \ {s∗}
5: while c(p) < n do
6: s∗ ← argmax{op[l(p)],s + os,suc(s) | s ∈ Ŝ}
7: Extend path p by adding s∗ to its end
8: Ŝ ← Ŝ \ {s∗}
9: end while

10: p ← Find Best Subpath(p)
11: output: DNA sequence s that is obtained from p

Sbs ⊂ S is defined as the set of all oligonucleotides in S whose best successor is
better or equal to the best successor of all the other oligonucleotides in S.

Sbs ← {s ∈ S | os,suc(s) ≥ os′,suc(s′), ∀ s′ ∈ S} (4)

Then, set Swp ⊆ Sbs is defined as the set of all oligonucleotides in Sbs whose best
predecessor is worse or equal to the best predecessor of all the other oligonu-
cleotides in Sbs: Swp ← {s ∈ Sbs | opre(s),s ≤ opre(s′),s′ , ∀ s′ ∈ Sbs}. As
starting oligonucleotide we choose the one (from Swp) that is found first. The
idea hereby is to start the path construction with an oligonucleotide that has
a very good successor and at the same time a very bad predecessor. Such an
oligonucleotide has a high probability to coincide with the start of the target
sequence.

FB-LAG: A simple extension of the LAG heuristic is obtained by allowing the
path construction not only in forward direction but also in backward direction.
We call this heuristic henceforth forward-backward lock-ahead greedy (FB-LAG)
heuristic. At each construction step the heuristic decides (with the same criterion
as LAG) to extend the current path either in forward direction or in backward
direction. FB-LAG is obtained from Algorithm 1 by exchanging lines 6, 7, and 8
with the following lines:

sr ← argmax{op[l(p)],s + os,suc(s) | s ∈ Ŝ}
sl ← argmax{opre(s),s + os,p[1] | s ∈ Ŝ}
if op[l(p)],sr

+ osr ,suc(s) > opre(s),sl
+ osl,p[1] then

Extend path p by adding sr to its end; Ŝ ← Ŝ \ {sr}
else

Extend path p by adding sl to its beginning; Ŝ ← Ŝ \ {sl}
A second change with respect to LAG concerns the implementation of function
Choose Initial Oligonulceotide(S). As the path construction allows forward and
backward construction it is not necessary to start the path construction with an
oligonucleotide that has a high probability of being the beginning of the target

360 C. Blum and M.Y. Vallès

sequence. It is more important to start with an oligonucleotide that has a high
probability of being part of the target sequence:

s∗ ← argmax{opre2(s),pre(s) + opre(s),s + os,suc(s) + osuc(s),suc2(s) | s ∈ S} , (5)

where pre2(s) denotes the best predecessor of the best predecessor of s (i.e.,
pre(pre(s))), and similar for suc2(s).

SM: The idea of the sub-sequence merger (SM) heuristic (see Algorithm 2) is
conceptionally quite different to the LAG and FB-LAG heuristics. Instead of con-
structing only one path, the heuristic starts with a set of |S| paths, each of which
only contains exactly one oligonucleotide s ∈ S, and then merges paths until a
path of sufficient size is obtained. The heuristic works in two phases. In the first
phase, two paths p and p′ can only be merged if p′ is the unique best succes-
sor of p, and if p is the unique best predecessor of p′. The heuristic enters into
the second phase if and only if the first phase has not already produced a path
of sufficient length. In the second phase, the uniqueness conditions are relaxed,
that is, two paths p and p′ can be merged if p′ is among the best successors of p,
and p is among the best predecessors of p′. The reason of having two phases is
the following: The first phase aims to produce possibly error free sub-sequences
of the target sequence, whereas the second phase (which is more error prone
due to the relaxed uniqueness condition) aims at connecting the sub-sequences
produced in the first phase in a reasonable way.

In Algorithm 2, given two paths p and p′, op,p′ is defined as op[l(p)],p′[1], that is,
the overlap of the last oligonucleotide in p with the first one in p′. In correspon-
dence to the notations introduced in Equations 2 and 3, the following notations
are used:

suc(p)← argmax{op,p′ | p′ ∈ P, p′ �= p} , (6)
pre(p)← argmax{op′,p | p′ ∈ P, p′ �= p} . (7)

Futhermore, Ssuc(p) is defined as the set of best successors of p, that is, Ssuc(p) ←
{p′ ∈ P | op,p′ = op,suc(p)}; and Spre(p) is defined as the set of best prede-
cessors of p, that is, Spre(p) ← {p′ ∈ P | op′,p = opre(p),p}. Finally, function
Find Best Subpath(p) is implemented as described before.

HSM: The hybrid sub-sequence merger (HSM) heuristic is obtained by combining
the FB-LAG heuristic with the SM heuristic. This combination is based on the
following observation: At each stage of the SM heuristic, the FB-LAG heuristic
can be applied to the problem instance that is obtained as follows. Given the
current path set P of the SM heuristic, a spectrum Ŝ is created that contains
the DNA sequences retrieved from the paths in P .1 The result of the FB-LAG
heuristic when applied to this problem instance can (of course) be regarded as a
result for the original problem instance. It remains to specify at which stages of
the SM heuristic the FB-LAG heuristic is applied. The first application of FB-LAG

1 Note that the oligonucleotides of such a spectrum might have different lengths.

New Constructive Heuristics for DNA Sequencing by Hybridization 361

Algorithm 2. The SM heuristic
1: input: A graph G, and the length of the target sequence n
2: P ← {〈s〉 | s ∈ S}
3: PHASE 1:
4: stop = false
5: for overlap = l− 1, . . . , 1 do
6: while ∃ p, p′ ∈ P s.t. op,p′ = overlap & |Ssuc(p)| = 1 & |Spre(p′)| = 1 &

suc(p) = p′ & pre(p′) = p & stop = false do
7: Add path p′ to the end of path p
8: P ← P \ {p′}
9: if c(p) ≥ n then

10: stop = true
11: end if
12: end while
13: end for
14: PHASE 2:
15: for overlap = l− 1, . . . , 1 do
16: while ∃ p, p′ ∈ P s.t. op,p′ = overlap & p′ ∈ Ssuc(p) & p ∈ Spre(p′) &

stop = false do
17: Choose p and p′ such that l(p) + l(p′) is maximal
18: Add path p′ to the end of path p
19: if c(p) ≥ n then
20: stop = true
21: end if
22: end while
23: end for
24: Let p be the path in P with maximal cost
25: p ← Find Best Subpath(p)
26: output: DNA sequence s that is obtained from p

is the one to the original problem instance, that is, before the first phase of SM
has started. Then, in the first as well as in the second phase of SM, FB-LAG is
applied at the end of the respective for-loop (i.e., after line 12 and after line 21
in Algorithm 2). However, FB-LAG is only applied if the while-loop before was
executed at least once. Note that in case the while-loop is not even executed a
single time, the problem instance derived from the path set P has not changed
since the previous application of FB-LAG. Finally, the output of HSM is the best
result among the different applications of FB-LAG and the final result of SM.

3 Results

We implemented the 4 heuristics outlined in the previous section in ANSI C++
using GCC 3.2.2 for compiling the software. Our experimental results were ob-
tained on a PC with an AMD64X2 4400 processor and 4 Gb of memory.

362 C. Blum and M.Y. Vallès

Table 1. Results of our constructive heuristics for the instances by B�lażewicz et al. [5]

Spectrum size 100 200 300 400 500
Average solution quality 76.98 153.53 230.68 309.03 383.08
Solved instances 23 15 12 7 4
Average similarity score (global) 77.05 133.63 171.78 206.80 218.60
Average similarity score (local) 91.83 152.43 209.33 272.40 293.48
Average computation time (sec) 0.0035 0.016 0.037 0.076 0.13

(a) Results of LAG

Spectrum size 100 200 300 400 500
Average solution quality 78.38 155.70 234.95 310.03 386.20
Solved instances 32 17 18 7 1
Average similarity score (global) 99.78 153.03 225.45 241.00 221.83
Average similarity score (local) 102.38 174.15 253.63 284.58 290.13
Average computation time (sec) 0.0051 0.022 0.054 0.11 0.19

(b) Results of FB-LAG

Spectrum size 100 200 300 400 500
Average solution quality 79.75 157.80 234.90 306.90 367.38
Solved instances 38 31 30 28 18
Average similarity score (global) 106.33 195.85 284.68 357.98 376.25
Average similarity score (local) 107.20 203.03 293.75 377.00 416.68
Average computation time (sec) 0.005 0.02 0.046 0.082 0.13

(c) Results of SM

Spectrum size 100 200 300 400 500
Average solution quality 80.00 159.68 239.90 319.38 398.88
Solved instances 40 36 39 35 31
Average similarity score (global) 108.40 204.78 300.00 396.90 469.55
Average similarity score (local) 108.70 206.85 305.35 399.85 479.88
Average computation time (sec) 0.012 0.048 0.11 0.21 0.35

(d) Results of HSM

A broad set of benchmark instances for DNA sequencing by hybridization was
introduced by B�lażewicz et al. in [5]. It consists of 40 real DNA target sequences
of length 109, 209, 309, 409, and 509 (alltogether 200 instances). Based on real
hybridization experiments, the spectra were generated with probe size l = 10. All
spectra contain 20% negative errors as well as 20% positive errors. For example,
the spectra concerning the target sequences of length 109 contain 100 oligonu-
cleotides of which 20 oligonucleotides do not appear in the target sequences.

We applied the 4 heuristics outlined in the previous section to all problem
instances. The results are shown in Table 1. The second row of each sub-table

New Constructive Heuristics for DNA Sequencing by Hybridization 363

 0

 100

 200

 300

 400

 500

 100 200 300 400 500

A
ve

ra
ge

 s
im

ila
rit

y
sc

or
e

(g
lo

ba
l)

Spectrum size

 LAG

 FB-LAG
 SM

 HSM
 OW

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 200 300 400 500

S
ol

ve
d

in
st

an
ce

s

Spectrum size

 LAG

 FB-LAG
 SM

 HSM
 OW

(b)

Fig. 2. Comparison of all existing constructive heuristics concerning (a) the global
average similarity score obtained, and (b) the number of optimally solved instances.
The comparison concerns the instances of B�lażewicz et al. [5].

 0

 100

 200

 300

 400

 500

 100 200 300 400 500

A
ve

ra
ge

 s
im

ila
rit

y
sc

or
e

(g
lo

ba
l)

Spectrum size

 EA1
 EA2
 EA4

 TS
 TS/SS

 HSM

Fig. 3. Comparison of HSM with existing meta-heuristics concerning the instances by
B�lażewicz et al. [5]

contains the average solution quality (that is, the average number of oligonu-
cleotides in the constructed paths), which must be maximized. The third row
provides the number (out of 40) of solved problem instances, that is, the number
of instances for which a path of maximal length could be found. The fourth and
fifth row provide average similarity scores obtained by comparing the computed
DNA sequences with the target sequences. The average scores in the fourth row
are obtained from the Needleman-Wunsch algorithm (global alignment), and the
average scores that are displayed in the fifth row are obtained from the Smith-
Waterman algorithm (local alignment). Both algorithms were applied with the
following parameters: +1 for a match of oligonucleotides, -1 for a mismatch or
a gap. Finally, the sixth row provides the average computation times for solving
one instance (in seconds).

From the results that are displayed in Table 1 we can draw the following con-
clusions. First, the results of FB-LAG improve in general over the results of LAG.
This means that it is beneficial to allow the path construction in two directions
(forward as well as backward). Second, the results of the SM heuristic are clearly
better than both the results of LAG and the results of FB-LAG. However, the best

364 C. Blum and M.Y. Vallès

results are obtained by the HSM heuristic, which is a hybrid between FB-LAG
and SM. Even for the largest problem instances, the HSM heuristic produces se-
quences with very high similarity scores. In order to provide a comparison of all
existing constructive heuristics we added the OW heuristic (see [6]) to this com-
parsion. This comparison is shown graphically in Figure 2. The results clearly
show that HSM is currently the best available constructive heuristic.

Finally, in Figure 3 we present a comparison between HSM and available
metaheuristic approaches from the literature. The results are surprising: HSM is
clearly better than the 4 metaheuristic approaches EA1, EA4, TS, and TS/SS.2

Furthermore, the results of HSM are—except for the problem instance of target
sequence size 509—comparable to the results of the best metaheuristic approach
EA2. Taking into account the advantage in computation time (i.e., HSM needs
not even half a second to compute its results for the largest problem instances,
while EA2—which is the fastest existing metaheuristic—needs several seconds)
the HSM heuristic seems to be a good choice even when compared to metaheuris-
tic approaches.

4 Conclusions and Future Work

In this work we have proposed new constructive heuristics for the problem of
DNA sequencing by hybridization. First, we extended an existing heuristic.
Then, we proposed a conceptionally new heuristic that is based on merging
shorter DNA strands into bigger ones until a DNA strand of sufficient size is ob-
tained. Finally we proposed a hybrid between both types of constructive heuris-
tics. The results show that our hybrid method is the best constructive heuristic
available to date. Moreover, concerning the results our hybrid method is com-
parable to state-of-the-art metaheuristics. Only concerning the biggest problem
instances our hybrid method has slight disadvantages. On the other side, our
constructive heuristics need less computation time.

We believe that our new constructive technique (as implemented by the SM
heuristic) can be used to develop metaheuristics that are superior to exisiting
metaheuristics for DNA sequencing by hybridization. As a first step, existing
metaheuristics might be applied to problem instances resulting from intermediate
stages of the SM heuristic. This might improve their results and save much
computation time.

References

1. Bains, W., Smith, G.C.: A novel method for nucleid acid sequence determination.
J. of Theoretical Biology 135 (1988) 303–307

2. IuP, Y.P.L., Florentiev, V.L., Khorlin, A.A., Khrapko, K.R., Shik, V.V.: Determi-
nation of the nucleotide sequence of DNA using hybridization with oligonucleotides.
a new method. Doklady Akademii Nauk SSSR 303 (1988) 1508–1511

2 Note that EA3 is not included because from [13] it is not clear which allignment
algorithm was used by the authors.

New Constructive Heuristics for DNA Sequencing by Hybridization 365

3. Drmanac, R., Labat, I., Brukner, R., Crkvenjakov, R.: Sequencing of megabase
plus DNA by hybridization: Theory of the method. Genomics 4 (1989) 114–128

4. Pevzner, P.A.: l-tuple DNA sequencing: Computer analysis. Journal of Biomulec-
ular Structure and Dynamics 7 (1989) 63–73

5. B�lażewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W.T., Weglarz, J.:
DNA sequencing with positive and negative errors. J. of Computational Biology 6
(1999) 113–123

6. B�lażewicz, J., Formanowicz, P., Guinand, F., Kasprzak, M.: A heuristic managing
errors for DNA sequencing. Bioinformatics 18(5) (2002) 652–660

7. B�lażewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W.T., Weglarz, J.:
Tabu search for DNA sequencing with false negatives and false positives. European
J. of Operational Research 125 (2000) 257–265

8. B�lażewicz, J., Glover, F., Kasprzak, M.: DNA sequencing—Tabu and scatter search
combined. INFORMS J. on Computing 16(3) (2004) 232–240

9. B�lażewicz, J., Glover, F., Kasprzak, M.: Evolutionary approaches to DNA sequenc-
ing with errors. Annals of Operations Research 138 (2005) 67–78

10. B�lażewicz, J., Kasprzak, M., Kuroczycki, W.: Hybrid genetic algorithm for DNA
sequencing with errors. J. of Heuristics 8 (2002) 495–502

11. Endo, T.A.: Probabilistic nucleotide assembling method for sequencing by hy-
bridization. Bioinformatics 20(14) (2004) 2181–2188

12. Bui, T.N., Youssef, W.A.: An enhanced genetic algorithm for DNA sequencing
by hybridization with positive and negative errors. In Deb et al., eds.: Proc.
GECCO’04. Volume 3103 of LNCS, Springer Verlag, (2004) 908–919

13. Brizuela, C.A., González, L.C., Romero, H.J.: An improved genetic algorithm for
the sequencing by hybridization problem. Proc. EvoWorkshops. Volume 3005 of
LNCS, Springer Verlag, (2004) 11–20

14. Fernandes, E.R., Ribeiro, C.C.: Using an adaptive memory strategy to improve a
multistart heuristic for sequencing by hybridization. Proc. WEA’05. Volume 3503
of LNCS, Springer Verlag, (2005) 4–15

Optimal Probing Patterns for Sequencing by

Hybridization

Dekel Tsur

Department of Computer Science, Ben-Gurion University of the Negev
dekelts@cs.bgu.ac.il

Abstract. Sequencing by Hybridization (SBH) is a method for recon-
structing a DNA sequence based on its k-mer content. This content,
called the spectrum of the sequence, can be obtained from hybridization
with a universal DNA chip. The main shortcoming of SBH is that it reli-
ably reconstructs only sequences of length at most square root of the size
of the chip. Frieze et al. [9] showed that by using gapped probes, SBH can
reconstruct sequences with length that is linear in the size of the chip. In
this work we investigate the optimal placement of the gaps in the probes,
and give an algorithm for finding nearly optimal gap placement. Using
our algorithm, we obtain a chip design which is more efficient than the
chip of Frieze et al.

1 Introduction

Sequencing by Hybridization (SBH) [3, 16] is a method for sequencing DNA
molecules. In this method, the target sequence is hybridized to a universal chip
containing all 4k sequences of length k. For each k-long sequence (or probe) in the
chip, if its reverse complement appears in the target, then the two sequences will
bind (or hybridize), and this hybridization can be detected. Thus the hybridiza-
tion experiment gives the set of all k-long substrings of the target sequence. This
set is called the spectrum of the target.

Currently, SBH is not considered competitive in comparison with standard
gel-based sequencing technologies. The main shortcoming of SBH is that sev-
eral sequences can have the same spectrum. Thus, if, for example, we wish to
reconstruct at least 0.9 fraction of the sequences of length n, then n must be
less than roughly 2k [20,8,2,23]. Several methods for overcoming this limitation
of SBH were proposed: interactive protocols [25, 17, 10, 28], using location infor-
mation [1, 5, 11, 4, 7, 23], using a known homologous string [19, 18, 27], and using
restriction enzymes [26, 24].

Another method for enhancing SBH was proposed by Pevzner et al. [20].
They suggested using gaps (or universal bases) in the probes that can match
to any of the four bases. For example, the probe AφφG matches the sequences
TAAC, TACC, TAGC, etc. A gapped probe can be implemented using a uniform
mixture of the sequences that match the probe with length the same as the
probe. Frieze et al. [9] showed that for every k, there is a chip with 4k probes

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 366–375, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Optimal Probing Patterns for Sequencing by Hybridization 367

that can reconstruct sequences of length Θ(4k). This result is optimal up to
constants. For a fixed k, the chip of Frieze et al. consists of all probes of the form
X�k/2� (φ�k/2�−1X

)�k/2�
, where the X symbols represent definite bases (namely,

each X symbol is replaced by one of the four bases). Preparata and Upfal [22]
considered the same probing pattern of Frieze et al., and gave an improved
algorithm for reconstructing the sequence from its spectrum. This algorithm
allows reconstructing longer sequences than the algorithm of Frieze et al. An
even more efficient algorithm was given in [12]. Heath et al. [13] showed that
chips containing probes of the form X�k/2� (φ�k/2�−1X

)�k/2�
and of the form(

Xφ�k/2�−1
)�k/2�

X�k/2� are more efficient than the Frieze et al. chips. A semi-
degenerate base is a base that matches either A/T or G/C. Probes containing
semi-degenerate bases were studied in [20, 21].

In this paper we study the problem of designing optimal probing patterns.
More precisely, for a given length and number of definite bases, the goal is
to find the probing pattern that allows reconstructing longest sequences (it is
desired to use probes with small length and small number of definite bases, since
each of these parameters affects the number of molecules on the chip). We give
an algorithm for this problem, and show that the probing patterns obtained
by this algorithm are about 3 times more efficient than the probing patterns
of Frieze et al. For simplicity, we shall restrict our study to a single probing
pattern consisting of definite bases and gaps. However, our method can also be
used for multiple probing patterns, and for probes containing semi-degenerate
bases. We note that our work is somewhat similar to the research on seed design
for similarity search (see, for example, [6, 14, 15]).

Due to lack of space, some details are omitted from this extended abstract.

2 Finding Optimal Probing Patterns

We first give some definitions. A probing pattern is binary string whose first and
last characters are 1. The weight of a probing pattern P is the number of ones
in P . The set of probes that corresponds to a probing pattern P is the set of all
strings that are obtained by replacing every 0 in P by the character φ, and every
1 in P by one of the characters from Σ = {A, C, G, T}. A probe Q appears in a
string S if the string Q matches to a substring of S, where the character φ is a
don’t care symbol (namely, it matches to every letter of Σ). The P -spectrum of
a string S is the set of all probes from the set of probes of P that appear in S.

As an example for the definitions above, consider the probing pattern P =
1101. The set of probes corresponding to P is {AAφA, AAφC, AAφG, AAφT,
ACφA, . . . ,TTφT}, and the P -spectrum of the string ACGATAC is {ACφA,
ATφC, CGφT, GAφA}.

Our goal is to find optimal probing patterns, so we first need to define the
notion of optimality. A string S is unambiguously reconstructable from its P -
spectrum if there is no S′ �= S whose P -spectrum is equal to the P -spectrum
of S. For a probing pattern P , the resolution power r(P, n) of P is the fraction

368 D. Tsur

of the strings of length n that are unambiguously reconstructable from their
P -spectra. The resolution power is a natural measure for comparison between
different probing patterns. However, this measure ignores the issue of the time
complexity of reconstructing a string from its spectrum. Therefore, instead of the
resolution power, we will use the following measure: Let R be a reconstruction
algorithm, that is, R receives as input a P -spectrum of a string A and outputs
either the string A or ‘failure’. The success probability of algorithm R on a
probing pattern P , denoted sp(P, n, R), is the fraction of the strings of length
n that are reconstructed correctly from their P -spectra by algorithm R. The
failure probability of R is 1− sp(P, n, R).

In this extended abstract, we will concentrate on the reconstruction algorithm
of Preparata and Upfal [22], which will be denoted RPU. Our goal is to find a
probing pattern P of a given length and weight, that maximizes sp(P, n, RPU)
for some given n. Efficiently computing sp(P, n, RPU) seems a difficult task, so
we will show how to compute a value s̃p(P, n) that approximates sp(P, n, RPU).
A probing pattern POPT that maximizes s̃p(P, n) is almost optimal with respect
to sp(P, n, RPU). An alternative way to approximate sp(P, n, RPU) is by Monte
Carlo simulations (running algorithm RPU on a large set of random strings and
computing the fraction of the runs in which the algorithm succeeds). However,
this approach is much more computationally intensive than our approach, which
makes it infeasible if the number of probing patterns that needs to be considered
is large. Moreover, our approach gives insight on what makes a probing pattern
efficient.

In the following, we will use A = a1 · · ·an to denote the target string. Let P
be some probing pattern of length L and weight k, and let H be some constant.
We assume that the first and last L− 1 letters of A are known. Algorithm RPU

reconstructs the first n −H + 1 letters of A as follows (reconstructing the last
H − 1 letters is performed in a similar manner by reconstructing the sequence
backwards):

1. Let s1, . . . , sL−1 be the first L− 1 letters of A.
2. For t = L, L + 1, . . . , n−H + 1 do:

(a) Let Bt be the set of all strings B of length H such that the string
s1 · · · st−1B is consistent with the P -spectrum of A (i.e., the P -spectrum
of s1 · · · st−1B is a subset of the P -spectrum of A).

(b) If all the strings in Bt have a common first letter a, then set st ← a.
Otherwise, return ‘failure’.

3. Return s1 · · · sn−H+1.

For the rest of this section, we show how to compute an approximation f̃p(P, n) =
1− s̃p(P, n) of the failure probability of algorithm RPU. Our analysis is similar
to the analysis of Heath and Preparata [12]. However, the analysis of Heath and
Preparata is specific to the probing pattern of Frieze et al. In particular, they
omitted several cases from the analysis which are negligible for that probing
pattern. In our analysis, we consider more cases. Moreover, we handle the time
complexity for computing f̃p(P, n), which is not done in [12].

Optimal Probing Patterns for Sequencing by Hybridization 369

It is easy to verify that if algorithm RPU does not return ‘failure’, then
s1 · · · sn−H+1 = a1 · · · an−H+1. Moreover, the algorithm stops at some t if and
only if there is a string B ∈ Bt whose first letter is not equal to at. Such a
string B will be called a bad extension. The string at · · · at+H−1 ∈ Bt is called
the correct extension.

Suppose that the algorithm failed at some t, and let B = b1 · · · bH be the
corresponding bad extension. Denote B′ = at−l+1 · · · at−1b1 · · · bH . By definition,
the H probes that appear in B′ also appear in A. That is, for every i = 1, . . . , H,
there is an index ri such that B′[i + j − 1] = A[ri + j − 1] for all 1 ≤ j ≤ L for
which P [j] = 1. The probe that corresponds to the index ri is called supporting
probe i. Supporting probe i is called a fooling probe if ri �= t − L + i. Fooling
probe i is called close if ri ∈ {t − L + 2, . . . , t}. Two supporting probes i and
j will be called adjacent if rj − ri = j − i, and they will be called overlapping
if |rj − ri| < L and they are not adjacent. Fooling probe i is simple if it is not
close, and it is not adjacent or overlapping with another fooling probe.

Let J be the minimum index such that the probes J, J +1, . . . , H are pairwise
adjacent. Note that some of the supporting probes can appear more than once
in A, and therefore, there may be several ways to choose the values of r1, . . . , rH .
We assume that these values are chosen in a way that minimizes the number of
fooling probes and the value of J .

2.1 Simple Probes

We first assume that fooling probes 1, . . . , J − 1 are simple, and that probe
J is a fooling probe. We will analyze the case of non-simple fooling probes in
Section 2.2. Let α denote the probability that a random probe appears in the
string A. Using the Chen-Stein method, it is easy to show that the number of
occurrences of a random probes in A is approximated by a Poisson distribution
with mean (n−L+1)/4k. In particular, we have that α ≈ 1− e−(n−L+1)/4k

. We
consider several cases:

Case 1. J = 1. In this case we have that ar1 · · ·ar1+L−1 = at−L+1 · · · at−1b1.
This event is composed of L − 1 character equalities in A (ar1+j−1 = at−L+j

for j = 1, . . . , L − 1), and one character inequality (ar1+L−1 = b1 �= at). Thus,
this event happens with probability 3/4L for fixed t and r1. Since there are
approximately

(
n
2

)
ways to choose t and r1, it follows that the contribution of

case 1 to f̃p(P, n) is by

b1 =
n2

2
· 3
4L

.

Case 2. 2 ≤ J ≤ L. In this case we have arJ · · · arJ+L−J−1 = at−L+J · · · at−1,
and arJ+L−J �= at. Moreover, from the minimality of J we have that arJ−1 �=
at−L+J−1. Which of the probes 1, . . . , J − 1 are fooling probes? If for a probe
i, bi−L+j = at+i−L+j−1 for all j for which L − i + 1 ≤ j ≤ L and P [j] = 1 (in
words, the characters sampled by probe i are equal in the bad extension and the
correct extension) then the probe is not a fooling probe. Therefore, the number

370 D. Tsur

of fooling probes depends on the mismatches between the strings at · · ·at+J−2

and b1 · · · bJ−1. Let C be a binary string of length J − 2, where C[i] = 1 if
at+i �= bi+1, and C[i] = 0 otherwise. Let Ĉ = 0L−11C, namely, a string with
L − 1 zeros followed by one is concatenated to C (the leftmost 1 is due to the
fact that we always have at �= b1). We say that the pattern P hits a string S of
length L if there is an index i such that P [i] = S[i] = 1. Thus, the number of
fooling probes among probes 1, . . . , J − 1 is equal to the number of substrings
of Ĉ of length L that are hit by P , which will be denoted hits(Ĉ).

Since probes J, J +1, . . . are pairwise adjacent, we have that bi = arJ+L−j+i−1

for i = 1, . . . , L − 1. Therefore, C[i] = 0 forces the equality at+i = arJ+L−J+i

(which happens with probability 1/4), and C[1] = 1 forces the inequality at+i �=
arJ+L−J+i (which happens with probability 3/4). Thus, for fixed t, ri, and C, the
probability that the equalities between the symbols at+i and bi+1 are according
to C is 3ones(C)/4J−2, where ones(C) is the number of ones in C. It follows that
the contribution of case 2 to f̃p(P, n) is

∑L
J=2 bJ , where

bJ = n2

(
3
4

)2 1
4L−J

∑
C∈{0,1}J−2

3ones(C)αhits(0L−11C)

4J−2

= n2 9
4L

∑
C∈{0,1}J−2

3ones(C)αhits(0L−11C).

Case 3. L + 1 ≤ J ≤ H − L + 2. This case is similar to case 2, so we omit the
details. The contribution of this case to f̃p(P, n) is

∑H−L+2
J=L+1 bJ , where

bJ = n2 9
4L

∑
C∈{0,1}J−2

3ones(C)αhits(0L−11C).

Case 4. J > H − L + 2. The contribution of this case to f̃p(P, n) is negligible
(we omit the details).

We now handle the time complexity of computing b2, . . . , bH−L+2. A straight-
forward computation of b2, . . . , bH−L+2 takes O(

∑H−L+2
J=2 LJ ·2J) = O(LH ·2H)

time. We now show a dynamic programming algorithm for computing b2, . . . ,
bH−L+2 in O(H · 2L) time. For J = 2, . . . , H − L + 2 and a binary string C of
length min(J − 2, L− 1), define

b(J, C) =
∑

C′∈{0,1}J−2:C′ is a suffix of C

3ones(C′)αhits(0L−11C′).

Clearly,

bJ = n2 9
4L

∑
C∈{0,1}min(J−2,L−1)

b(J, C),

and the following recurrence is used to compute b(J, C): For J < L + 2,

b(J, C) = b(J − 1, C[1]C[2] · · ·C[|C| − 1]) · 3C[|C|] · αhits(0L−|C|−11C),

and for J ≥ L + 2,

Optimal Probing Patterns for Sequencing by Hybridization 371

b(J, C) =
∑

x∈{0,1}
b(J − 1, xC[1]C[2] · · ·C[|C| − 1]) · 3C[|C|] · αhits(xC).

The computation of hits(0L−|C|−11C) or hits(xC) is done in O(1) time by com-
puting a table that stores the value of hits(C′) for every string C′ of length L.

2.2 Nonsimple Probes

Consider cases 2 and 3 above.

Case 2. Fix some 2 ≤ J ≤ L. In this extended abstract, we only handle the
case when some of the probes 1, . . . , J − 1 are adjacent to probe J , and the
rest of the probes from 1, . . . , J − 1 are pairwise non-adjacent. Consider some
fixed C ∈ {0, 1}J−2, and let IC be the set of fooling probes that correspond to
substrings of 0L−11C that are hit by P . We say that a probe i ∈ IC samples
position rJ − j if 1 ≤ j ≤ J − i and P [(J − i) + 1 − j] = 1, or in other words,
probe i contains the character arJ−j if it is adjacent to probe J .

By the definition of J , arJ−1 �= at−L+J−1. Therefore, the probes that sample
position rJ − 1 cannot be adjacent to probe J . Let I ′C be the set of the probes
in IC that do not sample rJ − 1. Let SC = {rJ − j1, . . . , rJ − j|SC |} be the set
of all the positions rJ − j that are sampled by at least one probe from I ′C . If a
probe i ∈ I ′C is adjacent to probe J then arJ−j = at−L+J−j for every position
rJ − j that is sampled by probe i. For a target string A, the equalities of the
form arJ−j = at−L+J−j that are satisfied for positions rJ − j ∈ SC can be rep-
resented by a binary string C′ of length |SC |: C′[l] = 1 if arJ−jl

�= at−L+J−jl

and C′[l] = 0 otherwise. The probes in I ′C that are adjacent to probe J can
be determined from the string C′: For each such probe, C′[l] = 0 for every l
such that position rJ − jl is sampled by the probe. We define fooling(P, IC , C′)
to be the number of probes in I ′C that sample some position rJ − jl with
C′[l] = 1. To account for non-simple probes, we change the definition of bJ from
Section 2.1 to

bJ = n2 9
4L

∑
C∈{0,1}J−2

β(P, IC),

where

β(P, IC) = 3ones(C)α|IC−I′
C| 1

4|SC|

∑
C′∈{0,1}|SC|

3ones(C′)αfooling(P,IC ,C′).

A naive computation of β(P, IC) is time consuming. To compute β(P, IC) more
efficiently, we use the following idea: Let S ⊆ SC be the set of all positions
rJ − jl ∈ SC such that the set of probes that sample rJ − jl is equal to the
set of probes that sample rJ − j1. The positions in S can be collapsed into a
single positions, namely instead of representing a configuration by a binary string
C′ of length SC , we can represent a configuration using a string C′′ of length
1 + |SC − S|. This can be repeated with the other positions in SC .

Another speedup follows from the following observation:

372 D. Tsur

Claim. For two probing patterns P and P ′, if P [i] ≥ P ′[i] for all i, then
β(P, IC) ≤ β(P ′, IC) for every set IC .

We use the claim as follows. When searching for the optimal probing pattern
of length L and weight k, we first compute β(P ′, IC) for all sets IC and for all
probing patterns with length L and weight at most k, in which all the ones are
in first 8 positions of the pattern or the last position. Then, when computing the
failure probability for some pattern P , we choose the pattern P ′ whose prefix of
length 8 is equal to the prefix of length 8 of P , and we use β(P ′, IC) instead of
β(P, IC).

Case 3. In this we need to consider two sub-cases. The first case is when probe
J is a fooling probe. The analysis of this case is similar to the analysis of the
previous case. The second case is when probe J is not a fooling probe, namely
rJ = t− L + J .

We have that b1 �= at and from the minimality of J , bJ−L �= at−1+J−L. Recall
that C is a binary string of length J − 2, where C[i] = 1 if at+i �= bi+1, and
C[i] = 0 otherwise. From the fact that rJ+i = t− L + J + i for i ≥ 0 it follows
that C[J − L] = C[J − L + 1] = · · · = C[J − 2] = 0. From the minimality of
J , C[J − L − 1] = 1 when J > L + 1. Therefore, for J > L + 1, we add the
term

b′J = 9n
∑
C

3ones(C)αhits(0L−11C)

to bJ , where the sum is over all strings C ∈ {0, 1}J−2 that satisfy C[J − L] =
C[J −L + 1] = · · · = C[J − 2] = 0 and C[J −L− 1] = 1. For J = L + 1 we have
that only one string C satisfies the requirements (the string C = 0J−2) and we
have the term

b′L+1 = 3n · 3ones(0J−2)αhits(0L−110J−2) = 3n · αk.

The case of probe J not being a fooling probe for J = L+1 was called “Mode
1” in [12].

3 Results

The s, r-probing pattern of Frieze et al. [9] is the pattern 1s(0s−11)r. For a fixed
weight k, the optimal s, r-probing pattern is the pattern with s = �k/2� (and r =
�k/2�). Denote this pattern by PFPU

k . We run the algorithm of Section 2 with k =
7, L = 15, 16, 17, and n = 4000. The best patterns found by the the algorithm
for L = 15, 16, 17 are POPT

15,7 = 111001000001011, POPT
16,7 = 1101000100001011,

and POPT
17,7 = 11010001000001011, respectively. For each probing pattern, we ran

algorithm RPU on 1000 random target strings (with the probing patterns PFPU
7 ,

POPT
15,7 , POPT

16,7 , and POPT
17,7), and computed the success rate of the algorithm. The

results are given in Figures 1 and 2. The failure rate of RPU for the pattern
POPT

16,7 (whose length is the same as the length of PFPU
7) is about 3 times smaller

than the failure rate for PFPU
7 .

Optimal Probing Patterns for Sequencing by Hybridization 373

Fig. 1. Success probability of algorithm RPU on the patterns PFPU
7 (solid line) and

POPT
16,7 (dashed line) for various values of n. The gray solid line gives the probability

that Mode 1 does not occur, which is an upper bound on the success probability for
any pattern.

Fig. 2. Success probability of algorithm RPU on the patterns PFPU
7 (solid line), POPT

15,7

(dashed line), and POPT
17,7 (dotted line) for various values of n.

Recall that Mode 1 refers to the case when the bad extension differs from the
correct extension only in the first letter. The bad extension is supported by k
fooling probes. Using Poisson approximations, the probability that a failure due
to Mode 1 occurs is approximately 1− e−3(n−L+1)αk

. Note that this probability
depends only on the length L of the probing pattern, but not on the pattern

374 D. Tsur

itself. Therefore, e−3(n−19)αk

is an upper bound on the success probability of all
probing patterns of length at most 20. This upper bound is shown as a gray solid
line in Figures 1 and 2. An analysis of the failures show that most (about two
thirds) of the failures in the runs of POPT

16,7 are due to Mode 1, while only small
part of the failures in the runs of PFPU

7 are due to Mode 1. Since Mode 1 failure
is unavoidable, we have that the probing pattern POPT

16,7 is very close to optimal.
It is clear from the analysis of Section 2 that longer probing patterns can

achieve smaller failure probability. Indeed, the pattern POPT
17,7 performs better

than POPT
16,7 , and its failure probability is very close to the lower bound of Mode 1

failure probability. Moreover, while the pattern POPT
15,7 is shorter than PFPU

7 , it
has a smaller failure probability than PFPU

7 (for n ≥ 2000).

References

1. L.M. Adleman. Location sensitive sequencing of DNA. Technical report, University
of Southern California, 1998.

2. R. Arratia, D. Martin, G. Reinert, and M.S. Waterman. Poisson process approxi-
mation for sequence repeats, and sequencing by hybridization. J. of Computational
Biology, 3(3):425–463, 1996.

3. W. Bains and G.C. Smith. A novel method for nucleic acid sequence determination.
J. Theor. Biology, 135:303–307, 1988.

4. A. Ben-Dor, I. Pe’er, R. Shamir, and R. Sharan. On the complexity of positional
sequencing by hybridization. J. Theor. Biology, 8(4):88–100, 2001.

5. S.D. Broude, T. Sano, C.S. Smith, and C.R. Cantor. Enhanced DNA sequencing
by hybridization. Proc. Nat’l Acad. Sci. USA, 91:3072–3076, 1994.

6. J. Buhler, U. Keich, and Y. Sun. Designing seeds for similarity search in genomic
DNA. J. of Computer and System Sciences, 70(3):342–363, 2005.

7. R. Drmanac, I. Labat, I. Brukner, and R. Crkvenjakov. Sequencing of megabase
plus DNA by hybridization: theory of the method. Genomics, 4:114–128, 1989.

8. M.E. Dyer, A.M. Frieze, and S. Suen. The probability of unique solutions of
sequencing by hybridization. J. of Computational Biology, 1:105–110, 1994.

9. A. Frieze, F.P. Preparata, and E. Upfal. Optimal reconstruction of a sequence from
its probes. J. of Computational Biology, 6:361–368, 1999.

10. A.M. Frieze and B.V. Halldórsson. Optimal sequencing by hybridization in rounds.
J. of Computational Biology, 9(2):355–369, 2002.

11. S. Hannenhalli, P.A. Pevzner, H. Lewis, and S. Skiena. Positional sequencing by
hybridization. Computer Applications in the Biosciences, 12:19–24, 1996.

12. S.A. Heath and F.P. Preparata. Enhanced sequence reconstruction with DNA
microarray application. Proc. 7th Conf. on Combinatorics and Computing CO-
COON’01, pages 64–74, 2001.

13. S.A. Heath, F.P. Preparata, and J. Young. Sequencing by hybridization using
direct and reverse cooperating spectra. J. of Computational Biology, 10(3/4):499–
508, 2003.

14. U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search.
Discrete Applied Mathematics, 138(3):253–263, 2004.

15. G. Kucherov, L. Noé, and M. Roytberg. A unifying framework for seed sensi-
tivity and its application to subset seeds. Proc. 5th Workshop on Algorithms in
Bioinformatics WABI’05, LNCS 3692, pages 251–263, 2005.

Optimal Probing Patterns for Sequencing by Hybridization 375

16. Y. Lysov, V. Floretiev, A. Khorlyn, K. Khrapko, V. Shick, and A. Mirzabekov.
DNA sequencing by hybridization with oligonucleotides. Dokl. Acad. Nauk USSR,
303:1508–1511, 1988.

17. D. Margaritis and S. Skiena. Reconstructing strings from substrings in rounds.
Proc. 36th Symp. on Foundations of Computer Science FOCS’95, pages 613–620,
1995.

18. I. Pe’er, N. Arbili, and R. Shamir. A computational method for resequencing
long DNA targets by universal oligonucleotide arrays. Proc. Nat’l Acad. Sci. USA,
99:15497–15500, 2002.

19. I. Pe’er and R. Shamir. Spectrum alignment: Efficient resequencing by hybridiza-
tion. Proc. 8th Conf. on Intelligent Systems in Molecular Biology ISMB’00, pages
260–268, 2000.

20. P.A. Pevzner, Y.P. Lysov, K.R. Khrapko, A.V. Belyavsky, V.L. Florentiev, and
A.D. Mirzabekov. Improved chips for sequencing by hybridization. J. Biomolecular
Structure and Dynamics, 9:399–410, 1991.

21. F.P. Preparata and J.S. Oliver. DNA sequencing by hybridization using semi-
degenerate bases. J. of Computational Biology, 11(4):753–765, 2004.

22. F.P. Preparata and E. Upfal. Sequencing by hybridization at the information theory
bound: an optimal algorithm. J. of Computational Biology, 7:621–630, 2000.

23. R. Shamir and D. Tsur. Large scale sequencing by hybridization. J. of Computa-
tional Biology, 9(2):413–428, 2002.

24. S. Skiena and S. Snir. Restricting SBH ambiguity via restriction enzymes. Proc.
2nd Workshop on Algorithms in Bioinformatics WABI’02, LNCS 2452, pages 404–
417, 2002.

25. S. Skiena and G. Sundaram. Reconstructing strings from substrings. J. of Com-
putational Biology, 2:333–353, 1995.

26. S. Snir, E. Yeger-Lotem, B. Chor, and Z. Yakhini. Using restriction enzymes to
improve sequencing by hybridization. Technical Report CS-2002-14, Technion,
Haifa, Israel, 2002.

27. D. Tsur. Bounds for resequencing by hybridization. Proc. 3rd Workshop on Algo-
rithms in Bioinformatics WABI’03, LNCS 2812, pages 498–511, 2003.

28. D. Tsur. Sequencing by hybridization in few rounds. Proc. 11th European Sym.
on Algorithms ESA’03, LNCS 2832, pages 506–516, 2003.

Gapped Permutation Patterns

for Comparative Genomics

Laxmi Parida

Computational Biology Center, IBM T. J. Watson Research Center,
Yorktown Heights, New York 10598, USA

parida@us.ibm.com

Abstract. The list of species whose complete DNA sequence have been
read, is growing steadily and it is believed that comparative genomics
is in its early days [12]. Permutations patterns (groups of genes in some
“close” proximity) on gene sequences of genomes across species is be-
ing studied under different models, to cope with this explosion of data.
The challenge is to (intelligently and efficiently) analyze the genomes
in the context of other genomes. In this paper we present a generalized
model that uses three notions, gapped permutation patterns (with gap g),
genome clusters, via quorum, K > 1, parameter, and, possible multiplic-
ity in the patterns. The task is to automatically discover all permutation
patterns (with possible multiplicity), that occur with gap g in at least K
of the given m genomes. We present O(log mNI + |Σ| log |Σ|NO) time
algorithm where m is the number of sequences, each defined on Σ, NI

is the size of the input and NO is the size of the maximal gene clusters
that appear in at least K of the m genomes.

Keywords: Pattern discovery, data mining, labeled trees, clusters, pat-
terns, motifs, permutation patterns, comparative genomics, whole
genome analysis, evolutionary analysis.

1 Introduction

As research in genomic science evolves, there is a rapid growth in the number
of available complete genome sequences. To date about a dozen species of ani-
mals have had their complete DNA sequence determined and the list is growing
steadily [12]. The knowledge of gene positions on a chromosome, combined with
the strong evidence of a correlation between the position and the function of
a gene makes the discovery of common gene clusters invaluable firstly for un-
derstanding and predicting gene/protein functions and secondly for providing
insight into ancient evolutionary events.

In recent years, this problem has be modeled and studied intensively by the
research community. The first model of a genome sequence allowing only orthol-
ogous1 genes was introduced by Uno and Yagiura [14]. By modeling genomes as

1 These genes appear in different organisms, and are believed to have the same evolu-
tionary origin (generated during speciation).

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 376–387, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Gapped Permutation Patterns for Comparative Genomics 377

permutations, they defined a common interval to be a pair of intervals of two
given permutations consisting of the same set of genes. The number of such in-
tervals, NO, can be quadratic in the size of the input, NI . They gave an optimal
O(NI + NO) time algorithm based on a clever observation of monotonicity of
certain integer functions.

Heber and Stoye [9] extended this result to m ≥ 2 permutations. They intro-
duced the idea of irreducible intervals, whose number can be only linear in the
size of the input. They offered an optimal O(NI) time algorithm to detect all
the irreducible intervals and based on this they gave an optimal O(NI + NO)
algorithm for the general problem with m ≥ 2 permutations. The problem of
identification of common intervals has been revisited in [3].

Bergeron, Corteel and Raffinot [5] formalized the notion of distance-based
clusters: this allows the genes in a cluster to be separated by gaps that do not
exceed a pre-defined threshold. Such clusters are termed gene teams and they
are constrained to appear in all given m sequences. The authors present an
O(mn log2 n) algorithm to detect the gene teams that occur in m sequences
defined on n genes (alphabet).

A slightly modified model of a genome sequence, that allows paralogs2 was
introduced in [7] and a pattern discovery framework was formalized for this set-
ting: a pattern is a gene cluster, that allows for multiplicity, i.e., paralogous genes
within a cluster appearing quorum K > 1 times. K is the quorum parameter,
usually used in the context of patterns. Formally, the following problem was
addressed: Given m strings (with possible multiplicity) on Σ of length ni each,
and a quorum K, the task is obtain all permutation patterns p that occur in at
least K sequences. The algorithm presented in [7] is based on Parikh-maps and
has a time complexity of O(Ln log |Σ| logn), where L (< maxi(ni)) is the size of
the largest cluster and n = Σi(ni). Here, we introduced the notion of maximal
permutation patterns or clusters. In this context, maximality is a non-trivial
notion requiring a special notation. In [11], this notation was shown to be a PQ
tree structure [10] and a linear time algorithm was presented to compute it for
each pattern (cluster).

Using a similar model of genomes as sequences rather than permutations,
Schmidt and Stoye [13] devised a Θ(n2) algorithm for extracting all common
intervals of two sequences. In [8], He and Goldwasser extend the notion of gene
teams to COG (clusters of orthologous genes) teams by allowing any number of
paralogs and orthologs, and devised an O(mn) time algorithm to find such COG
teams for pairwise chromosome comparison where m and n are the number of
orthologous genes in the two chromosomes.

As the number of genomes under study grows in number, it becomes impor-
tant to handle not only distance based clusters (or gapped clusters) but also its
co-occurrence in some subset and not necessarily all the m genomes. Again, max-
imality is an important idea that potentially cuts down the number of clusters
without significant loss of information.

2 Paralogous genes appear in the same organism and caused by the duplication of
ancestor genes.

378 L. Parida

Contributions of this paper. We formalize a generalized model that uses three
notions explored independently before, as we discussed above: 1) gapped gene clus-
ters, with gap g, and, (2) genome clusters, via a quorum, K > 1, parameter and
(3) multiplicity in the gene clusters. The task is to automatically discover all per-
mutation patterns (with possible multiplicity) occurring with gap at most g in at
least K of the given m sequences. let Pg denote the patterns that with gap g (see
precise definition in the next section) on K of the m input sequences. Note that
the use of (1) the quorum parameter (m ≥ K > 1) with multiplicity in the in-
put and (2) multiple sequences (m ≥ 2) distinguishes it from the previous gapped
cluster models [5,8]: in the first, K is fixed at m, without multiplicity, and in the
second, m is fixed at 2. Although, in this paper gap g is defined in terms of number
of intervening genes, it can be simply generalized to other definition of gap (such
as actual location on the chromosome or “distance” from a target gene and so on)
and one of these variations will be discussed elsewhere.

Overview of the approach. When g = 0, the problem has a O(Ln log |Σ| log n)
time solution, where L is the size of the pattern. When g = 0 the size of the
output is no more than Σi(n2

i). We also note that when g > 0, multiple patterns
may occur with the same imprint and thus the output size could be potentially
exponential in the input parameter (say m). When g is very large (or gene clus-
ters), the problem has an output-sensitive algorithm (discussed in Section 3.1).
Note that if p ∈ Pg, it is possible that p �∈ P0 and there is no p′ ∈ P0 such that p
can be deduced from p′. But if p ∈ Pg, then there must exist p′′ ∈ P∞ such that
p ⊆ p′′ and the occurrences of p can be deduced from the occurrences of p′′. We
use this as a handle to solving the 0 < g <∞ case. We solve the problem in two
stages: in the first stage we solve the problem for large gaps (g = ∞). In fact
since the number of patterns is very large, we compute only the maximal permu-
tation patterns. We use the solution of the first stage to construct the solutions
for the given gap g. The overall time complexity of this two-stage algorithm is
O(log mNI + |Σ| log |Σ|NO) where NI is the size of the input and NO is the the
number of maximal gene clusters that appear in at least K of the m genomes.
For the sake of completeness, we give a method to extract all the non-maximal
patterns out of the maximal ones of the last stage.

2 Notation

A genome or chromosome is denoted by a sequence s which is defined on the
genes or a finite alphabet Σ. s[i . . . j] denotes the subsequence of s from ith to
the jth element. Also, a gene cluster is referred to as a pattern (or permutation
pattern or πpattern) in this paper.
Definition 1. (Π(s)), Π ′(s)) Given a sequence s on Σ, Π(s) = {σ ∈ Σ |
σ=s[i] for some 1 ≤ i ≤ |s|}. Π ′(s) = {σ(l) | σ ∈ Π(s), σ appears exactly l
times in s}.
For example if s = abcda, Π(s) = {a, b, c, d}. If s = abbccdac, Π ′(s) = {a(2),
b(2), c(3), d(1)}. The latter set is said to have multiplicity, i.e., it has multiple
“copies” of one or more elements of the set.

Gapped Permutation Patterns for Comparative Genomics 379

Definition 2. (p1 ⊆ p2) Let p1 and p2 be sets with multiplicity. Then, p1 ⊆ p2

if and only if for each σ(l) ∈ p1, σ(l′) ∈ p2 holds where l′ ≥ l.

For convenience, sometimes the l = 1 annotation is omitted. For example {a(2),
b(2), c(3), d(1)} is written as {a(2), b(2), c(3), d}.

Definition 3. (occurs with gap g, imprint) Given a sequence s on Σ, a set
p ∈ 2Σ occurs at position i on s with gap g if all the following hold:

1. s[i] ∈ p (this ensures that the very first character is not a gap),
2. l is the smallest number such that p ⊆ Π(s[i . . . (i+ l−1)]) (this ensures that

the very last character is not a gap). and,
3. if for every pair i ≤ i1 < i2 ≤ (i + l − 1) with s[i1], s[i2] ∈ p, and for all j,

i1 < j < i2, s[j] �∈ p, the distance between i1 and i2 is no more than g i.e.,
(i2− i1− 1) ≤ g holds. In other words, there are at most g gaps between any
two non-gap (solid) characters.

Further, the subsequence s[i . . . (i + l − 1)] is an imprint of p at location i.

For example, if p = {a, b, c} with s = c e b a h r s c b e a g, then p occurs at loca-
tions 1 and 8 with gap g = 1 with the imprint of the occurrence shown boxed
in s = c eba h r s cb ea g. However, if gap g ≥ 3, then there is a third occur-
rence of p as well at location 4 whose imprint is shown as s = c e bah r s c b e a g

Definition 4. (permutation pattern, πpattern p, location list Lg
p) Given

m sequences si (1 ≤ i ≤ m) each on alphabet Σ, a quorum 1 < K ≤ m and
a gap 0 ≤ g, p ∈ 2Σ is a permutation pattern or a πpattern with quorum K,
if location list Lg

p = {(i, l, u) | p occurs with gap g and imprint si[l, u] } is such
that |Lg

p| ≥ K.

In the following, assume that P is the set of all πpatterns on the given m se-
quences. Note that if p ∈ P , it does not imply that any (p′ ⊂ p) ∈ P . So,
maximality in permutation patterns is not straightforward and is defined for-
mally as follows [7].

Definition 5. [7](maximal p) Given P, pa ∈ P is non-maximal if there exists
pb ∈ P such that: (1) the imprint of each occurrence of pa is contained in the
imprint of an occurrence of pb, and (2) the imprint of each occurrence of pb

contains l ≥ 1 imprints of occurrence(s) of pa. A pattern pb that is not non-
maximal is maximal.

In fact, it was shown in [7] that when the gap g = 0, there is a concise notation
to represent all the non-maximal patterns of p and in [11] it was shown that
these non-maximal patterns can be arranged as a PQ tree structure. It was also
demonstrated in [11] that when gap g = 0, with multiplicity in the patterns, a
single PQ tree may fail to capture all the non-maximal patterns.

We demonstrate here that when the gap g > 0, there is no straightforward
representation using a single PQ structure. Consider the following example.

380 L. Parida

Example 1. Let s1 = a b c d e f g h j and s2 = b j d g f e h c l with quorum K = 2
and gap g = 1. Consider the following: p0 = {c, e, g, j, b, d, f, h}, p1 = {b, d, f, h},
p2 = {c, e, g, j}, p3 = {e, g, d, f}, p4 = {c, e, d, f}, p5 = {g, j, b, d}, p6 =
{c, e, b, d}, p7 = {c, e, j, b}, p8 = {c, b, d, h}. For g = 1, p0, p1, p2, p3 and p4

are πpatterns but p5, p6, p7 and p8 are not. Note that p1, p2, p3, p4 are non-
maximal with respect to p0. It is easy to see that a single PQ structure cannot
succinctly represent the πpatterns.

The reason for using maximal patterns although there is no convenient structure
capturing the non-maximal patterns is that, the number of patterns are smaller
and the overcounting caused by non-maximal patterns can be avoided. We use
the following definition of maximality:

Definition 6. (maximal p) Let P be the set of all πpatterns on a set of given
m sequences. Then pa ∈ P is non-maximal if there exists (pb ⊃ pa) ∈ P such that
the imprint of each occurrence of pa is contained in the imprint of an occurrence
of pb. A pattern pb that is not non-maximal is maximal.

For the remainder of the discussion input size, NI , and output size, NO, are
defined as follows:

NI(s, m) =
m∑

i=1

|si| and NO(P) =
∑
p∈P

(|p|+ |Lp|) (1)

Note that Lst(Lp) is simply a collection of the sequence indices.
Let Pg denote the maximal patterns with gap g. The following example

demonstrates the case when the output size can be exponential.

Example 2. Let s1 = 2 3 4 5, s2 = 1 3 4 5, s3 = 2 6 4 5, s4 = 2 3 7 5, s5 = 2 3 4 8
and K = 2 and gap g = 1. Then P1 = { {2}, {3}, {4}, {5}, {2, 3}, {2, 4}, {2, 5},
{3, 4}, {3, 5}, {4, 5}, {2, 3, 4}, {2, 3, 5}, {3, 4, 5}, {2, 4, 5} }. Thus P1 = O(2m).

Next we define a collection of sequence indices of a pattern p as follows used in
the next section.

Definition 7. (Lst(Lg
p)) Given Lg

p, Lst(Lg
p) = {i | (i,−,−) ∈ Lg

p}.

3 The Gapped Permutation Pattern Problem

Problem 1. (g-Gap πPattern Problem g-GPP(s, m, K, P)) Given m sequen-
ces si defined on a finite alphabet Σ and some integer g ≥ 0 and K > 1, the
task is to find P , the collection of maximal πpatterns that occur on s with gap
g and quorum K.

One of the main problems with permutation patterns is that it cannot be built
from smaller units (as in sequence patterns, say). In other words p1 and p2 may
not, but p1 ∪ p2 could be a pattern. For example consider s1 = 7 1 2 3 4 5 7 8,
s2 = 6 2 4 1 3 9 with K = 2. p1 = {1, 2} and p2 = {3, 4} are not but p = p1 ∪ p2

= {1, 2, 3, 4} is a permutation pattern.

Gapped Permutation Patterns for Comparative Genomics 381

∞-GapMaxπPattern(s,m, K, P∞)
Dic[j] = {i(�) | σj occurs exactly � times in si} //dictionary
S [1] ← {0, 1, 2, , . . . , m}; S [2] ← φ //dummy 0 in S [1]
MineMaxπpat(K, 1, 1,S) //main call

//σj appears lj1 < lj2 < . . . < ljn times in input s
MineMaxπpat(K, j, r,S)
BEGIN
IF (j > |Σ|) EXIT
� ← ljr

Snew[1] ← {i | (i ∈ S [1]) AND (i(�′) ∈ Dic[j], �′ ≥ �)}
Snew[2] ← S [2] ∪ {σj(�)}
IF (|Snew [1]| ≥ K)

MAXML ← FALSE
IF Sold = Exists(T ,Snew[1])

IF Sold[2] ⊂ Snew[2] Update(T ,Sold[2],Snew[2])
ELSE MAXML ← TRUE

ELSE Add(T ,Snew)
IF MAXML = FALSE

j′ ← (jr = jn)? (j + 1) : j; r′ ← (jr = jn)? 1 : (r + 1)
MineMaxπpat(K, j′, r′,Snew)

MineMaxπpat(K, j + 1, 1,S)
END

Fig. 1. The pseudocode for finding maximal patterns (with possible multiplicity) that
occur with ∞ gap in at least K of the m sequences

This problem is compounded with gapped occurrences of the patterns. In [7]
we presented a Parikh-mapping based solution that used a fixed window size
(pattern size). However this approach cannot be used when a non-zero gap is
defined (since it is unclear which subset of the window are the solid characters
of the pattern).

3.1 (Stage 1) ∞-Gap Maximal πPattern Problem

At this stage, we seek all collection of characters that co-occur in at least K
sequences. The problem is formally defined as follows.

Problem 2. (∞-Gap πPattern Problem, ∞-GPP(s, m, K, P)) The input is
m sequences si, each of length ni, 1 ≤ i ≤ m, defined on a finite alphabet Σ,
and a quorum K. The output is all maximal permutation patterns (with possible
multiplicity), p, with its location list L∞

p .

In the worst case, the size of the output could be very large, i.e., |P∞| = O(2m),
assuming m % ni. So there is no hope for a worst-case polynomial time algorithm
and we explore an output sensitive method to compute the maximal patterns
P∞ in the following discussion.

382 L. Parida

Overview of the approach. Without loss of generality, assume an ordering on the
alphabet set as σ1 < σ2 < . . . < σl, where |Σ| = l. We next define the following.

Definition 8. (sO
p) Given p on a finite alphabet with ordering O given as Σ =

{σ1 < σ2 < . . . < σl}, sO
p is a sequence of length |p| such that Π(sO

p) = p and
for each pair i1 < i2, sO

p [i1] < sO
p [i2] holds.

Let X be (2Σ \ φ). In other words, X is the collection of all non-empty subsets
of Σ. Now consider the trie [2] of the following collection of sequences {sO

X | X ∈
X}. Given a node A in the trie, the unique path from the root to A defines a
sequence sp denoted as πpath(A). Clearly for an instance of problem any p ∈ P∞,
p = πpath(A) holds for some node A in the trie. However, the converse is not
true. So our interest is in the following modification of this trie.

Definition 9. (SO
∞,TO(P∞)) Given an instance of ∞-GPP(s, m, K, P∞), let

SO
∞ = {sO

p | p ∈ P∞} for some ordering O on the elements of Σ. Then the trie
on SO

∞ is defined as TO(P∞).

Thus different orderings give different trie’s, but they denote the same sets. It is
easy to see that if O1 and O2 are two distinct orderings, then, it is possible that
TO1(P∞) �= TO1 (P∞) but {Π(sO1

p) | p ∈ P∞} = {Π(sO2
p) | p ∈ P∞} = P∞.

The algorithm & its correctness. The algorithm is best described through the
pseudocode that is presented in Figure 1 and a complete example is discussed
in Figure 2. We first reorganize the input data s, by constructing the dictionary
Dic. The dictionary is an array, (indexed on σj) of ordered lists of two tuples,
written as i(k), sorted by i. k is the number of times σj appears in si. It is easy
to see that this construction takes linear time and Dic takes linear space. The
other initialization details are shown in Figure 1. To avoid clutter, in Figure 2(2),
k is omitted from the dictionary.

The main routine is MineMaxπPat() whose pseudocode is shown in Figure 1. It
is easy to verify that this recursive procedure implicitly constructs and traverses
T(P∞) depth first. The left-to-right ordering of the children is defined by the
order of the elements of Σ (that label the branches).

In the following we give the correspondence between the recursive call and
T(P∞). Each recursive call is a node, labeled with S[1] and a (descending)
branch, labeled with σj(l) in Figure 2(c). In Figure 2(c), the solid edges denote
the edges of the tree and the dashed edges denote the termination of the calls
or the backtracked edges. This shows that the algorithm does indeed construct
and traverse the tree T(P∞) and the correctness of the algorithm follows from
the lemma.

Lemma 1. The number of edges in T(P∞), constructed by MineMaxπPat(),
including the backtracked edges is no more than |Σ|

∑
p∈P∞ |p|.

Proof. The total number of prefixes of p, p ∈ P∞ is
∑

p∈P∞ |p| which is the
number of edges in the trie T(P∞). Also, the number of backtracked edges
(shown by dashed edges in the figures) for each node can be no more than |Σ|.
Hence the result. �

Gapped Permutation Patterns for Comparative Genomics 383

Dic[σ1=b] −→ 1 → 2(3) → 3(3) → 4(3) �
Dic[σ2=e] −→ 1 → 2(2) → 4 �
Dic[σ3=d] −→ 1 → 2 → 3 �
Dic[σ4=a] −→ 1 → 2 → 4 �
Dic[σ5=f] −→ 3 → 4 �
Dic[σ6=c] −→ 3 → 4 �

e

cf

{2,3,4}

b

e d
a

f
c

e(2)
d

a

a

c
fd

c
fa

{1,2,4}

{1,2,4}

{1,2,4}

c

{1,2,3}

e d
a

f

cf

b(3)

{1,2,4}

{0,1,2,3,4}

{1,2,3,4}

{1,2,4} {1,2,3}

(a) Dictionary (b) Ordered search tree with
quorum K = 3 (b < e < d < a < f < c)

Fig. 2. The algorithm described in Figure 1 for a sample data: s1 = b e da, s2 =
e d b a b e b, s3 = b b f c d b and s4 = c a f b e b b, with K = 3. The dictionary Dic which
is an array of ordered lists is shown in (2). (3) displays the implicit tree generated by
the recursive routine MineMaxπPat(). Each call is shown as a node, labeled with S [1]
and a (descending) branch, labeled with σj(�) (when � = 1, the annotation is omitted).
Also, if |S [1]| < (K = 3), it is not shown, to avoid clutter.

Time complexity. The generated location lists are stored on a data structure
(say balanced trees) that allows for efficient retrieval and insertion. A pattern
p is stored in this data structure, indexed by Lst(Lp) (see Definition 7). The
routines shown in bold in the figure, Update(T ,Sold[2],Snew[2]), Add(T ,Snew)
and Exist(T ,S[1]) are the update, insertion and retrieval routines respectively
on this data structure. Exist(T ,S[1]) returns the pattern denoted by Sold that
already exists in the data structure. Add(T ,Snew) stores Snew in the data struc-
ture. However, if Sold already exists, the associated pattern is updated. Since
K ′ ≤ m, each of the routine takes O(m log m) time.

At each recursive call (or edge of T(P∞)), the routine (except for Update(),
Add() and Exist() takes time O(m). This is possible since Snew[1] can be effi-
ciently computed as the merge of two ordered lists S[1] and Dic[j]. Thus, each call
takes O(m log m) time. The number of calls is |Σ|

∑
p∈P∞ |p| by Lemma 1. Hence

the algorithm takes O(NI(s, m) + |Σ|NO(P∞)m log m) time where NI(s, m) and
NO(P∞) are the sizes of the input and output respectively (see Equation (1) for
NI and NO).

3.2 (Stage 2) g-Gap Maximal πPattern Problem

At this stage, using the results of the last section, we extract the maximal per-
mutation patterns that occur with gap g(< ∞).

At the end of Stage 1, the maximal permutation patterns, p that occur with∞
gaps is stored in a balanced binary tree data structure T . A maximal permutation
pattern p′ (see Definition 6) that occurs with gap g is obtained from a maximal
pattern p with p′ ⊆ p where p occurs with ∞ gap as follows:

384 L. Parida

Let the imprint of p in si be si[ji1∞ , ji2∞], i ∈ Lst(L∞
p). Let p′ ⊆ p be a

maximal set (permutation pattern) such that imprint of p′ with gap g on si is
given as si[ji1g , ji2g] where ji1∞ ≤ ji1g ≤ ji2g ≤ ji2∞ , for some i ∈ Lst(L∞

p).
Following this notation, the collection of i’s for a p′ is defined as follows (i.e.,
the i’s where p′ occurs with gap g):

L′ = {(i ∈ Lst(L∞
p)) | ji1∞ ≤ ji1g ≤ ji2g ≤ ji2∞}

Then, the following holds.

Observation 1. If p′ ∈ P∞, then p′ ∈ Pg with L∞
p = Lg

p′ . If p′ �∈ P∞, then
there exists a unique p′′ ∈ P∞, which is the smallest (cardinality) set such that
p′ ⊆ p′′ ⊆ p. (See above for notation.)

Proof. Assume the contrary that there exists at least two maximal patterns
p1, p2 ∈ P∞ such that p′ ⊆ p1 and p′ ⊆ p2. If p1 and p2 are distinct and neither
is included in the other, then p1 ∩ p2 = p3 must be maximal. Also p′ ⊆ p3

contradicting the fact that p1 and p2 are the smallest cardinality sets. Thus
p1 = p2 = p′′.

Next we show that p′′ ⊂ p. Again, assume the contrary, i.e., p′′ �⊂ p (but
p′ ⊂ p and p′ ⊂ p′′), then p3 = (p ∩ p′′) must be maximal and p3 ∈ P∞. Then
p3 ⊆ p′′ and p′′ cannot be the smallest cardinality maximal set, leading to a
contradiction. Hence the result. �

Corollary 1. For a p ∈ P∞ and p′ ⊆ p such that p′ ∈ Pg, as above, if p′′ = p,
then Lst(Lg

p′) = L′.

This observation gives a very efficient (output-sensitive) algorithm to construct
Pg from P∞, along with the location lists. Next, Lg

p is computed from L′′ (recall
L′′ = Lst(Lg

p)).
If our interest was only in maximal permutation patterns, the process stops

here. However, to obtain all permutation patterns, we process each maximal
permutation pattern to obtain the non-maximal patterns in Stage 3.

3.3 (Stage 3) Restricted g-Gap πPattern Problem

Problem 3. (Restricted g-Gap πPattern Problem g-RGPP(r, l, L, K, P))
The input is m sequences si each of length l, where Π ′(si) = Π ′(sj) for each
1 ≤ i, j ≤ L. The output is all permutation patterns that occur with gap g in at
least K sequences.

Since Π ′(si) = Π ′(sj), for all 1 ≤ i, j ≤ L, each sequence is a permutation
(albeit with multiplicity) of s1. For convenience, we can assign integers to the
characters. First we seek all those patterns that occur in s1. We convert the input
to integers as follows. So, let s1 be the reference sequence. Since there is possible
multiplicity in s1, the mapping is not necessarily one-to-one and if σ(l) ∈ Π ′(s1),
then σ is mapped to a set of l integers. In other words, F (σ) = {j | s1[j] = σ}.

Gapped Permutation Patterns for Comparative Genomics 385

The size of a pattern p is defined to be sz(p) = Σσ(l)∈Π′(p)(l). Note that when
p has no multiplicities, sz(p) = |Π(p)|.

Observation 2. Any pattern p that occurs with gap g on the reference sequence
(say s1) is such that there exists an ordering f(σ1) < f(σ2) < . . . < f(σsz(p))
satisfying the condition (f(σi+1)−f(σi)) ≤ (g−1), for each 1 ≤ i < sz(p), where
σi ∈ Π(p) (σi not necessarily distinct from σj when i �= j), and f(σi) ∈ F (σi)
for 1 ≤ i ≤ sz(p).

Example 3. Let s1 = a b c d b and s2 = d b b a c. Using s1 as the reference se-
quence, the integer mappings are as follows: F (a) = {1}, F (b) = {2, 5}, F (c) =
{3}, F (d) = {4}. Note that p = {b(2), c(1)} is a pattern that occurs in both s1

and s2, and, the ordering

(f(b) = 2) < (f(c) = 3) < (f(b) = 5)

satisfies the condition of Observation 2 for gap g = 1.

The algorithm performs an ordered search by scanning each string si, i > 1, (s1

is the reference sequence) from left to right. We first fix a left pointer at jl and
move a right pointer jr from jl +1 to the end of the string. At each scan, we are
checking for a pattern that occurs on si with imprint si[jl . . . jr].

This ordered search is best explained through an example. Continuing Ex-
ample 3, s2 is written in terms of integers as: s′2 = {4} {2, 5} {2, 5} {1} {3}. Let
jl = 1 and jr = 2. The elements of s′2[jl . . . jr] (4, and, 2 or 5) are shown boxed
in the figure below. The two orderings (1) q1 = 2 < 4 and (2) q2 = 4 < 5, satisfy
the conditions of Observation 2. The p corresponding to an ordering q is defined
as p = {σ | k ∈ q and k ∈ F (σ)}. In the running example, p = {b, d} occurs in
s1 with imprints s1[2 . . . 4] and s1[4 . . . 5]. p occurs in s2 with imprint s2[jl . . . jr].
Thus Lg

p = {(1, 2, 4), (1, 4, 5), (2, 1, 2)}. At each scan, there are two mandatory
integers, corresponding to s′2[jl] and s′2[jr] (shown in bold in the figure below).

s′2 = 4 {2, 5} {2, 5} 1 3

jr ordering ordering p L1
p

2 2 4 5 2 < 4 {b, d} {(1, 2, 4),
4 < 5 (1, 4, 5), (2, 1, 2)}

3 2 4 5 2 < 4 < 5 {b(2), d} {(1, 2, 5), (2, 1, 3)}
4 1 2 4 5 1 < 2 < 4 {a, b, d} {(1, 1, 4), (2, 1, 4)}

1 < 2 < 4 < 5 {a, b(2), d} {(1, 1, 5), (2, 1, 4)}
5 1 2 3 4 5 1 < 2 < 3 < 4 {a, b, c, d} {(1, 1, 4),

1 < 3 < 4 < 5 (1, 1, 5), (2, 1, 5)}
2 < 3 < 4 < 5 {b(2), c, d} {(1, 2, 5), (2, 1, 5)}

1 < 2 < 3 < 4 < 5 {a, b(2), c, d} {(1, 1, 5), (2, 1, 5)}

Fig. 3. Consider Example 3. The patterns (and their location lists) generated as jl is
fixed at 1 and jr moves from 2 to 5 on s′2.

386 L. Parida

Any valid subsequence that satisfies conditions of Observation 2 must contain
these mandatory elements and must occur on s2 with gap g at s2[jl . . . jr].

Each pattern that is extracted in the last step is stored in a balanced tree
data structure say T g. At the end of the process, the patterns on the node of
this tree are checked to see if they appear in at least K of the given sequences.

Time Complexity. Let S = jr − jl + 1. All the orderings can be searched us-
ing a traversal scheme (such as DFS). Note that there are at most g ways of
picking the next character (node) in the traversal. Thus the time taken at each
scan to compute all the orderings is O(g2S) including the back edges (exclud-
ing the enumeration of the pattern). For a reference sequence, si, the scan is
repeated for each jl, 1 ≤ jl < l and for each sequence sj , j �= i. At the end the
data structure T g needs to be scanned only once. Thus the total time taken is
O(g2l2L2).

3.4 Putting It All Together

If the task is to obtain all permutation patterns that occur with gap g in at least
K of the given m sequences, then there are two options. The first option is to
extract the patterns in the three stages: first obtain all the maximal (Definition 6)
patterns and then extract the non-maximal patterns from each maximal pattern.
Note that in this case the integer encoding of the reference sequence s′i, which is
a fragment of the original sequence si, will reflect the indices of si. For example,
let s1 = a g hba cda with the maximal pattern shown in bold. This produces
the fragment b a d a and the integer mappings are F (a) = {5, 8}, F (b) = {4},
F (d) = {7}.

The second option is to augment each sequence si to si such that Π ′(si) =
Π ′(sj) for each i, jand directly apply the algorithm of Stage 3 to obtain the
maximal patterns. However, the first option, in practice, is preferred since it helps
weed out a lot of candidate patterns. We use this approach for the experiments
in the next section.

4 Conclusion and Ongoing Work

We have formalized a generalized model that uses maximal gapped patterns on
a subset of the genomes. The subset of the genomes is dictated by the quorum
parameter K. The gaps also help handle noisy and incomplete data. We present
an output sensitive algorithm to compute all the permutation patterns. We are
currently testing this model on a series of synthetic data and on available public
data. The two sets of real data are chloroplast gene order of Campanulaceae data
(used in [6]), and, the human and rat data [1,4]. We are applying the results of
this model for functional classification of genes/proteins, as well as construction
of phylogeny of the genomes. Our preliminary results on the latter application
are very encouraging, both on synthetic and chloroplast data.

Gapped Permutation Patterns for Comparative Genomics 387

References

1. M. Alexandersson, S. Cawley, and L. Pachter. SLAM—Cross-species gene finding
and alignment with a generalized pair hidden markov model. Genome Research,
13:496–502, 2003.

2. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structure and Algorithms.
Addison-Wesley Publishing Company, 1983.

3. A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot. Computing common
intervals of k permutations, with applications to modular decomposition of graphs.
Proc. 9th European Symp. on Algorithms ESA’05, volume 3669 of Lecture Notes
in Computer Science, pages 779–790, Springer Verlag, 2005.

4. N. Bray, O. Couronne, I. Dubchak, T. Ishkhanov, L. Pachter, A. Poliakov, E. Ru-
bin, and D. Ryaboy. Strategies and tools for whole-genome alignments. Genome
Research, 1:73–80, 2003.

5. A. Bergeron, S. Corteel, and M. Raffinot. The algorithmic of gene teams. Proc.
2nd Workshop on Algorithms in Bioinformatics WABI’02, volume 2452 of Lecture
Notes in Computer Science, pages 464–476, Springer Verlag, 2002.

6. M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L.-S. Wang, T. Warnow,
and S. Wyman. An empirical comparison of phylogenetic methods on chloroplast
gene order data in Campanulaceae. Comparative Genomics: Empirical and Ana-
lytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of
Gene Families, Kluwer, 2000.

7. R. Eres, G. Landau, and L. Parida. A combinatorial approach to automatic dis-
covery of cluster-patterns. Proc. 3rd Workshop on Algorithms in Bioinformatics
WABI’03, volume 2812 of Lecture Notes in Bioinformatics, pages 139–150. Springer
Verlag, 2003.

8. X. He and M.H. Goldwasser. Identifying conserved gene clusters in the presence
of orthologous groups. Proc. 8th Conf. on Research in Computational Molecular
Biology RECOMB’04, pages 272–280. ACM Press, 2004.

9. S. Heber and J. Stoye. Finding all common intervals of k permutations. Proc. 12th
Symp. on Combinatorial Pattern Matching CPM’01, volume 2089 of Lecture Notes
in Computer Science, pages 207–218. Springer Verlag, 2001.

10. K. Booth and G. Leukar. Testing for the consecutive ones property, interval graphs,
and graph planarity using pq-tree algorithms. J. of Computer and System Sciences,
13:335–379, 1976.

11. Gad Landau, Laxmi Parida, and Oren Weimann. Using pq trees for comparative
genomics. In Proc. Symp. on Combinatorial Pattern Matching CPM’05, volume
3537 of Lecture Notes in Computer Science, pages 128–143. Springer Verlag, 2005.

12. J. Mulley and P. Holland. Small genome, big insights. Nature, 431:916–917, 2004.
13. T. Schmidt and J. Stoye. Quadratic time algorithms for finding common intervals

in two and more sequences. In Proc. Symp. on Combinatorial Pattern Match-
ing CPM’04, volume 3109 of Lecture Notes in Computer Science, pages 347–358.
Springer Verlag, 2004.

14. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290–309, 2000.

Segmentation with an Isochore Distribution�

Miklós Csűrös1, Ming-Te Cheng1, Andreas Grimm2,
Amine Halawani1, and Perrine Landreau3

1 Department of Computer Science and Operations Research, Université de Montréal
C.P. 6128, succ. Centre-Ville, Montréal, Québec, Canada, H3C 3J7

csuros@iro.umontreal.ca
2 Lehr- und Forschungseinheit für Bioinformatik

Ludwig-Maximilians-Universität München, 80333 München, Germany
3 Institut Scientifique Polytechnique Galilée—Université Paris XIII

93430 Villetaneuse, France

Abstract. We introduce a novel generative probabilistic model for seg-
mentation problems in molecular sequence analysis. All segmentations
that satisfy given minimum segment length requirements are equally
likely in the model. We show how segmentation-related problems can
be solved with similar efficacy as in hidden Markov models. In partic-
ular, we show how the best segmentation, as well as posterior segment
class probabilities in individual sequence positions can be computed in
O(nC) time in case of C segment classes and a sequence of length n.

1 Introduction

Let x = x1x2 · · ·xn be a sequence of characters over a finite alphabet A. A
segmentation of x is described as a sequence z = z1z2 . . . zn that assigns a segment
class to each sequence position. The segmentation is thus a sequence over an
alphabet C, where C is the set of segment classes. A segment is a maximal
contiguous region of positions that belong to the same class. Many molecular
sequence analysis problems can be formulated as segmentation problems [1].
Obvious examples include the identification of isochores [2] in genomic DNA,
and identification of charge clusters and hydrophobic profiles for proteins. In
principle, all sequence annotation tasks (with non-overlapping segments) fit this
general segmentation framework. For example, even such a complex task as
eukaryotic gene prediction [3], entails the segmentation of a genomic sequence
into classes such as “intergenic” and “exonic.” In this work we are interested in
generative probabilistic models, when the sequence x is the observed value of
a random variable that depends solely on z, which is also a random instance.
Furthermore, we assume independence in the sense that each xi depends on zi

only. Such probabilistic models include hidden Markov models [4, 5], and other
notable examples [6,7]. Hidden Markov models (HMMs) have the computational
advantage that various segmentation-related problems, including that of finding
� Work supported by a grant from the Natural Sciences and Engineering Research

Council of Canada.

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 388–399, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Segmentation with an Isochore Distribution 389

the most likely segmentation, can be solved with linear-time algorithms in the
sequence length n.

This paper’s main goal is to introduce a new class of prior segmentation distri-
butions; namely, a uniform distribution over segmentations in which all segments
are longer than some specified threshold. Such a distribution captures usual ex-
pectations from segmentation results. We show that it is possible to compute
the most likely segmentation in linear time in n, while the minimum segment
length does not affect the running time. We show the same asymptotic running
times for computing the posterior probabilities for segment class memberships
and segment boundaries. In other words, we describe the analogues of the Viterbi
and forward-backward algorithms.

An important motivation for our segmentation model comes from the iso-
chore theory [8]. It postulates that the genome of warm-blooded vertebrates is
composed of isochores in a mosaic structure. An isochore is a long contiguous
segment of genomic DNA with a “fairly homogeneous” guanine+cytosine (GC)
content [9]. The old debate about the theory’s utility reemerged at the comple-
tion of the human genome draft sequence and persists to this day [9,10,11,12,13].
Eyre-Walker and Hurst [14] review biologically relevant issues in conjunction
with isochores. We do not want to settle the question of biological relevance,
but rather treat isochores as a technically useful concept describing the “fairly
homogeneous” GC content of a region within an environment of at least 50–300
thousand base pairs. Usual isochore computations involve sliding windows of
fixed length [10,11,13,14]. Window-less methods usually correspond to the min-
imization of some segment homogeneity measure [2, 15]. To our knowledge, no
generative model exists until now that explicitly captures the notions of min-
imum length and homogeneity at the same time. Here we put forward such a
minimalist model, along with relevant computations.

1.1 Model and Model Selection

First we describe a generative framework for defining segmentation problems. A
sequence of random variables X = (Xi : i = 1, . . . , n) is dependent on a sequence
of (unknown) segment class memberships Z = (Zi : i = 1, . . . , n). Here Xi ∈ A

are letters from a finite alphabet and Zi ∈ C are segment classes. The possible
segment classes C are known. From an observed sequence x = x1 · · ·xn, we want
to deduce a segmentation z = z1 · · · zn. The human genome is often analyzed
in terms of isochores named L1, L2, H1, H2, H3 with typical GC level cutoffs
of 0.37, 0.41, 0.46, 0.53. In our probabilistic framework, a human chromosome
sequence forms x, and C comprises isochore classes.

More or less general versions of this framework were considered in the statis-
tical literature [6, 16]. They usually involve Ω(n2)-time computations for deter-
mining optimal segmentations [16,17]. Optimality is measured by some fitness or
homogeneity measure. We focus on cases when the optimal segmentation can be
found efficiently by some reasonable principle. First of all, we assume indepen-
dence: the distribution of each Xi is completely determined by the probabilities

pz(x) = P

{
Xi = x

∣∣∣ Zi = z
}
.

390 M. Csűrös et al.

A direct likelihood maximization approach cannot be used to choose a hypoth-
esis z, since the likelihood is maximized when each zi = maxz pz(xi), which is
rarely a consistent estimation. (For example, in GC content analysis, the best
segmentation is a binary sequence of two classes for 100% and 0% GC.) We
discuss two main principles that lead to better estimates without overfitting.
The first principle is a Bayesian one: by imposing a prior distribution on Z,
one can select z that maximizes the posterior probability P

{
Z = z

∣∣∣ X = x
}

.
This principle is employed in hidden Markov models. If Z is a Markov chain
with a finite state set C, then the best segmentation can be found in O(n|C|)
time using the Viterbi algorithm [4, 5]. An alternative principle is to incorpo-
rate a notion of complexity in the optimization. For instance, the likelihood
can be combined with description length [18], which penalizes complicated seg-
mentations. When C is finite, and the segmentation’s complexity is measured
by the number of its segments, the best segmentation can be found efficiently
in O(n|C|) time [7]. When C is the set of all possible distributions over A,
then the best segmentation minimizes the entropy with an adequate complexity
penalization [2, 15].

The Bayesian approach of imposing a prior distribution on Z has the method-
ological advantage that it enables one to define probabilities of the type P

{
χ(Z)

∣∣∣
X = x

}
, where χ(·) is some “interesting” property. Interesting properties include

segment boundaries (χ(z) = {zi−1 = z′; zi = z}) and the class of a position
(χ(z) = {zi = z}). Concerning the notation χ(·), we use events and their indica-
tors interchangeably, and, thus, {zi = z} denotes both the event that position i
belongs to class z and the indicator variable which takes the value of 1 or 0,
when the event occurs or not, respectively.

2 Isochore Distribution

In what follows, we focus on the case when Z is uniformly distributed over all
segmentations satisfying certain minimum segment length requirements. We call
such a distribution an isochore distribution. When the segmentation prior is
uniform over a set Z, the posterior probabilities can be computed as

P

{
χ(Z)

∣∣∣ X = x
}
∝

∑
z∈Z∩χ(z)

P

{
X = x

∣∣∣ Z = z
}
, (1)

since P{X = x} does not depend on z and P{Z = z} is the same for every choice
of z ∈ Z. In our case, the main difficulty is the efficient enumeration of segmen-
tations that satisfy the minimum length requirements when the segmentation
value is fixed in a position.

We are interested in segmentations where segments of class z ∈ {1, . . . , C} are
of minimum length mz > 0. The notion of minimum segment length is captured
through the following notation. We define left(z, i) as the number of positions to

Segmentation with an Isochore Distribution 391

the left of i that belong to the same segment class, and right(z, i) as the number
of positions to the right that belong to the same segment class. Formally,

left(z, i) =
(
min
d>0
{d : zi−d �= zi}

)
− 1; right(z, i) =

(
min
d>0
{d : zi+d �= zi}

)
− 1.

We extend the notation so that zi = 0 whenever i ≤ 0 or i > n: if zj = z for all
j ≤ i then left(z, j) = j − 1 for all j ≤ i, and an analogous statement holds for
right() in the rightmost segment. Clearly, the length of the segment that includes
position i is the value length(z, i) = left(z, i) + right(z, i) + 1.

Definition 1. Let m1, . . . , mC > 0 be the minimum segment lengths for the
segment classes. A segmentation z is valid if and only if length(z, i) ≥ mzi for
all i = 1, . . . , n. A random variable Z has an isochore distribution if it is drawn
uniformly from the set of valid segmentations.

2.1 Number of Valid Segmentations

It is useful to compute the number of valid segmentations, since it defines our
prior. Let Nz(n) be the number of valid segmentations for a sequence of length n
which end with a segment of class z, and let N(n) =

∑
z Nz(n) be the total

number of valid segmentations. These values can be computed exactly:

Nz(n) =

⎧⎪⎨⎪⎩
0 if n < mz;
1 if n = mz;
Nz(n− 1) +

∑
z′ �=z Nz′(n−mz) if n > mz.

For the particular case of ∀z : mz = m, i.e., identical segment length thresholds,
we have the recursion N(n) = N(n − 1) + (C − 1)N(n −m) for n > m, with
the initial values N(n) = 0 for n < m and N(m) = C. Clearly, N(n) grows
exponentially with n. In general, N(n) = Θ(βn/m) where β is the root of the
characteristic equation β − β1−1/m − (C − 1) = 0. The value N(n) provides the
normalizing value in Eq. (1) and can be used for normalization in upcoming
formulas.

2.2 Computing the Best Segmentation

Finding the best segmentation under the isochore distribution prior is not dif-
ficult. The dynamic programming method outlined in [7] for C = 2 can be
generalized to an arbitrary number C of classes. Define

ξz(i) = pz(xi) and Ξz(i, i′) =
i′∏

j=i

ξz(j).

In other words, Ξz(i′, i) is the likelihood for a segment i..i′ in class z. We derive
a dynamic programming algorithm for the variables Vz(i) for all z ∈ {1, . . . , C}

392 M. Csűrös et al.

and i = 1, . . . , n. The variable Vz(i) gives the likelihood for the best segmentation
that is valid within the prefix x1..i and ends with class zi = z.

Vz(i)

=

⎧⎪⎪⎨⎪⎪⎩
0 i < mz ;
Ξz(1, mz) i = mz ;

max
{
ξz(i)Vz(i− 1), Ξz(i−mz + 1, i)maxz′ Vz′(i−mz)

}
i > mz .

(2)

After carrying out the computations for all z and i, the best segmentation ends
with arg maxz Vz(n) and previous classes can be found by tracing back the max-
ima in (2). An advantageous technique is to keep track of letter counts

ca(i) =
i∑

j=1

{xj = a}

for all a ∈ A and i and then compute Ξz(i, j) =
∏

a∈Σ

(
pz(a)

)ca(j)−ca(i−1) (with
ca(0) = 0). In order to reduce costly floating-point calculations,

(
pz(a)

)c should
be computed beforehand for all z ∈ {1, . . . , C}, a ∈ A and c ∈ {0, 1, . . . , m}.
One can also work with log Vz(i) instead to avoid underflow, and to expedite the
computations by performing additions instead of multiplications.

Theorem 1. A segmentation z that maximizes P

{
Z = z

∣∣∣ X = x
}

can be found
in O(nC) time when Z has an isochore distribution with C segment classes.

Proof. The recurrences of (2) can be computed in O(1) time for every z and i,
by keeping track of the letter counts ca(j) and the maxima maxz′ Vz′(j) in every
position j.
�

2.3 Computing Posteriors

For computing posterior probabilities, we need to be able to sample valid seg-
mentations that are constrained at a position. In order to simplify the formulas,
we assume from now on that the minimum segment lengths are identical, i.e.,
for all z, mz = m, and that the minimum length m is an even number.

In order to derive recurrence relations, consider the following sets of (not
necessarily valid) segmentations for z ∈ {1, . . . , C}, i ∈ {1, . . . , n} and d ∈
{0, . . . , n}:

L(d)
z (i) =

{
z : zi = z; left(z, i) ≥ d; ∀j < i− length(z, i) : length(z, j) ≥ m

}
R(d)

z (i) =
{
z : zi = z; right(z, i) ≥ d; ∀j > i + length(z, i) : length(z, j) ≥ m

}
.

In other words, L
(d)
z (i) is the set of segmentations that are restricted only for the

prefix z1, . . . , zi so that (a) positions i− d, . . . , i are in class z, and (b) segments

Segmentation with an Isochore Distribution 393

before the segment of i satisfy the minimum length requirements. The sets R
(d)
z (i)

are defined analogously for suffixes of z. Now, L
(m−1)
z′ (i − 1) ∩ R

(m−1)
z (i) is the

set of valid segmentations that have a z′ → z segment boundary at i. Hence, the
posterior probability of a boundary at position i > 1 can be written as

qz′→z(i) = P

{
Zi−1 = z′; Zi = z

∣∣∣ X = x
}

∝ P

{
X = x

∣∣∣ Z ∈ L
(m−1)
z′ (i− 1) ∩ R(m−1)

z (i)
}

when z′ �= z. It will be useful to define the posterior probabilities for position
1 < i < n being the left or right end of a segment in class z:

q→z(i) =
∑
z′ �=z

qz′→z(i); 1 < i ≤ n; (3a)

qz→(i) =
∑
z′ �=z

qz→z′ (i + 1); 1 ≤ i < n. (3b)

The posterior probability that position i belongs to class z is denoted by

qz(i) = P

{
Zi = z

∣∣∣ X = x
}

.

For the sake of completeness, we extend the notation of Eqs. (3) to the sequence
extremities: q→z(1) = qz(1) and qz→(n) = qz(n).

Theorem 2. Let μz(i) = P

{
Z ∈ L

(m/2)
z (i) ∩ R

(m/2)
z (i)

∣∣∣ X = x
}
. For all

i ∈ {1, . . . , n} and z ∈ {1, . . . , C}, the probability that position 1 < i < n belongs
to segment class z can be written as

qz(i) = μz(i) +
max{i−1, m

2 −1}∑
δ=0

q→z(i− δ) +
max{n−i, m

2 −1}∑
δ=0

qz→(i + δ).

Proof. If zi = z and z is a valid segmentation, then exactly one of the following
is true

1. left(z, i) ≥ m/2 and right(z, i) ≥ m/2 simultaneously;

2. position i’s segment starts at position i− δ for some 0 ≤ δ < m/2.

3. position i’s segment ends at position i + δ for some 0 ≤ δ < m/2.

The probability for Case 1 is μz(i). The probability of Case 2 is
∑

δ q→z(i− δ);
the probability of Case 3 is

∑
δ qz→(i + δ).
�

394 M. Csűrös et al.

3 Algorithm for Posterior Probabilities

Define the following likelihoods

Lz(i) =
∑

z∈L
(m−1)
z (i)

P

{
X1..i−1 = x1..i−1

∣∣∣ Z = z
}

; (4a)

λz(i) =
∑

z∈L
(m/2)
z (i)

P

{
X1..i−1 = x1..i−1

∣∣∣ Z = z
}

; (4b)

Rz(i) =
∑

z∈R
(m−1)
z (i)

P

{
Xi+1..n = xi+1..n

∣∣∣ Z = z
}

; (4c)

�z(i) =
∑

z∈R
(m/2)
z (i)

P

{
Xi+1..n = xi+1..n

∣∣∣ Z = z
}
; (4d)

bz′→z(i) =
∑

z∈L
(m−1)
z′ (i−1)∩R

(m−1)
z (i)

P

{
X = x

∣∣∣ Z = z
}

, i > 1. (4e)

Clearly, bz′→z(i) = Lz′(i− 1)ξz′(i− 1)ξz(i)Rz(i). whenever 1 < i ≤ n. Let

b→z(i) =
∑
z′ �=z

bz′→z(i) = ξz(i)Rz(i)
∑
z′ �=z

ξz′(i− 1)Lz′(i− 1), i > 1;

bz→(i) =
∑
z′ �=z

bz→z′(i + 1) = ξz(i)Lz(i)
∑
z′ �=z

ξz′(i + 1)Rz′(i + 1), i < n.

For the sequence extremities,

qz(1) ∝ b→z(1) = ξz(1)Rz(1); (5a)
qz(n) ∝ bz→(n) = ξz(n)Lz(n). (5b)

By Theorem 2, the posterior probabilities for segment class memberships can be
computed for all 1 < i < n as

qz(i) ∝ λz(i)ξz(i)�z(i) + hz(i), (6)

where

hz(i) =
min{i−1, m

2 −1}∑
δ=0

b→z(i− δ) +
min{n−i, m

2 −1}∑
δ=0

bz→(i + δ).

The right-hand sides of Eqs. (5) and (6) are normalized by dividing them
with Q =

∑
z ξz(1)Rz(1) =

∑
z ξz(n)Lz(n). In fact, posterior probabilities for

segment boundaries are computed by the same normalization:

q→z(i) = Q−1b→z(i) and qz→(i) = Q−1bz→(i).

Additionally, since P{Z = z} = 1/N(n) for all z, Bayes’ theorem gives P{X =
x} = Q

N(n) .

Segmentation with an Isochore Distribution 395

The variables of Eqs. (4) are computed by the following recurrences.

λz(i) = ξz(i− 1)λz(i− 1) + Ξz(i−
m

2
, i− 1)

×
∑
z′ �=z

ξz′(i− m

2
− 1)Lz′(i− m

2
− 1);

i >
m

2
+ 1 (7a)

Lz(i) = ξz(i− 1)Lz(i− 1)

+ Ξz(i−m + 1, i− 1)
∑
z′ �=z

ξz′(i−m)Lz′(i−m);

i > m (7b)

Analogous formulas are used to compute �z(i) and Rz(i). If m
2 < i ≤ n− m

2 + 1,
then

hz(i) = hz(i− 1) + b→z(i)− b→z(i−
m

2
) + bz→(i +

m

2
− 1)− bz→(i− 1). (8)

Obviously, hz(1) = b→z(1). For 1 < i ≤ m
2 the recurrence of Eq. (8) does not

include the subtraction of b→z(i− m
2) and for i > n− m

2 +1 the recurrence does
not include the term bz→(i + m

2 − 1). The variables of Eqs. (7) are initialized in
an obvious manner.

A useful algorithmic technique for computing expressions of the type A(z) =∑
z′ �=z B(z′) for all z in O(C) total time is the following. First compute Blo(z) =∑
z′<z B(z′) for all z. Then compute Bhi(z) =

∑
z′>z B(z′) for all z. Clearly, this

can be done in O(C) time. Now, A(z) = Blo(z)+Bhi(z) can be set in O(1) time
for each z. Using this technique, all variables can be computed for every i in
O(nC) time. Notice that the Ξz can be computed in O(1) time for all z, by
keeping track of character counts in prefixes and suffixes as described in §2.2.

Remark. It may seem that when the minimum lengths differ,
∑

z′ �=z ξz′(i −
mz)Lz′(i−mz) in (7b), for example, needs to be computed for each z separately,
resulting in a Θ(C2) factor in the running time. The technique, however, can be
readily adapted to this case. The appropriate Blo and Bhi values need to be kept
for recent values of j = i−mz, which again leads to a linear running time in C.

Theorem 3. All posterior probabilities for segment class memberships and seg-
ment boundaries can be computed in O(nC) time when Z has an isochore distri-
bution with C segment classes.

The posterior probabilities can be used in an Expectation Maximization
framework, as in Baum-Welch training for HMMs [4, 5]. Simply, the pz(x) are
estimated as

p̂z(x) =
∑n

i=1 qz(i){xi = x}∑n
i=1 qz(i)

.

3.1 Memory Management

Since the recurrences for � and R can be computed from right to left while those
for λ, L and h are computed in a left to right direction, a direct implementation

396 M. Csűrös et al.

would need to first compute and store the � and R values and then proceed
from left to right to carry out the posterior computations. The left-to-right
computation proceeds in a “lookahead” fashion: for every i, λz(i), Lz(i+ m

2 −1),
hz(i) and qz(i) are computed, in this order. Consequently, an array of size m
can store the necessary values Lz(j) for i − m

2 ≤ j < i + m
2 to carry out one

step of the left-to-right computations. For λz and hz, only the previous values
are needed. It is, however, a good idea to keep track of recent values of bz→ and
b→z so that they are not computed twice.

A direct implementation, in which all �z(i) and Rz(i) are computed before pro-
ceeding to the left-to-right computations, may be impractical for large sequences
because of large memory requirements. For longer sequences, it is possible to
do the computations using a “slicing” or “checkpointing” technique, similar to
those employed in pairwise sequence alignment and HMM training [19]. We do
not discuss the details here due to space limitations. The technique allows for
computing the probabilities on all-purpose desktop computers: our implementa-
tion was used to carry out the segmentations with five classes and m = 50000 for
human chromosome 1 (246 Mbp), with a memory footprint below 2 Gigabytes.
A recursive checkpointing technique leads to the following theorem.

Theorem 4. For C segment classes with minimum length m and a sequence
of length n, the posterior probabilities can be computed in O(LnC) time using
O
(
Cm1−1/Ln1/LL

)
workspace, where L is an arbitrary positive integer. In par-

ticular, by choosing L = Θ
(
log n

m

)
, the probabilities are computed in O(Cn log n

m)
time using O

(
Cm log n

m

)
workspace.

4 Experiments

We implemented the described procedure for posterior calculations in a Java
package. Figure 1 compares in a simulated experiment the quality of HMM-based

position

0.1

1.0

m=50

HMM

m=100

Fig. 1. Posterior segment class membership by HMM and isochore distributions. A
random DNA sequence of 1000 characters was generated with alternating 30% and 70%
GC level in 100bp segments. The plot compares the posterior segment class membership
for the 30% GC class as computed by an HMM (two states, state switching transition
probabilities are 0.01), and those computed using isochore distributions with minimum
length 50 and 100. The former already gives smoother results (see especially the seventh
segment), while the latter finds the true segmentation perfectly.

Segmentation with an Isochore Distribution 397

Fig. 2. Segment composition and length in the segmentation of chr19. Segment class
levels are as follows: 35%, 39%, 43%, 47%, and 53% GC in L1–H3, respectively.

predictions and our method. The figure illustrates that HMM predictions are
more easily affected by random fluctuations in the sequence composition.

For illustrative purposes, we carried out a segmentation of human chromo-
some 19 [20]. The results of the segmentation can be viewed as a custom
annotation track in the UCSC genome browser [21]; the track can be down-
loaded from http://www.iro.umontreal.ca/∼{}csuros/segmentation/hg17/
chr19-segments.bed.

There are two principal questions that need to be addressed in this context:
whether most of the genome can be classified into isochores, and whether there
is a non-arbitrary threshold on homogeneous region lengths. Using five isochore
classes, we segmented the sequence into segments within which the class member-
ship can be established with at least 90% probability, using a minimum length
of 50000 base pairs. About 85% of the sequence can be classified into one of
the isochore classes with more than 90% fidelity. Almost all of the missing 15%
fall into the unsequenced centromeric region, and the few percents that remain
are mostly in short segment boundaries. This fact does not necessarily reflect
the validity of classification, as long segments have a very small chance to fall
right between two classes in GC composition. Figure 2 plots the statistics on the
segments. This chromosome is unusually GC-rich [20], 1.4%, 9.4%, 15.9%, 22.8%
and 35.5% of the positions are classified into the classes L1, L2, H1, H2 and H3,
respectively. It is interesting to notice that a large number of the segments have
a length very close to the lower bound, which hints at heterogeneity below the
minimum length cutoff. Classically, isochores are said to be hundreds of thousand
base pairs in length: our segmentation does not reveal such a phenomenon.

5 Conclusion

We presented a novel probabilistic model for segmentations and showed how
usual techniques associated with hidden Markov models have their equivalents,

398 M. Csűrös et al.

including a Viterbi-style algorithm for finding the best segmentation, a forward-
backward algorithm for computing posteriors, and expectation maximization
for setting class parameters. The model features an explicit minimum segment
length parameter, which is not easily captured by an HMM. Our “minimalist”
model assumes a uniform distribution among segmentations that obey the seg-
ment length constraints. Some additional parameters can be easily incorporated
into the model. For instance, one can add conditional probabilities for changing
segment classes, or have a segment length distribution that is a shifted geometric
one. Using the example of Eq. (7b), write

Lz(i) = τ0ξz(i− 1)Lz(i− 1) + Ξz(i−m + 1, i− 1)
∑
z′ �=z

τz′ξz′(i−m)Lz′(i−m).

The parameter τ0 implies that segment length has a thresholded geometric dis-
tribution and the parameters τz′ model different probabilities for the preced-
ing segment class. In fact, such a parametrization is the equivalent of posterior
computations for HMMs when the state sequence has to obey some duration
thresholds. Hidden Markov models are sometimes used along with some ad hoc
thresholding on segment lengths (e.g., [22]). Our results show that such an ap-
proach can be implemented in a theoretically sound manner. There are some
standard techniques [5], involving extra states or transitions, which can model
minimum segment lengths at the price of increased time complexity. In contrast,
our algorithms’ running time is linear in the number of segment classes (using
the equivalent of two states per class), and the time complexity is not affected
by the minimum segment length.

Without doubt, many genome features (such as gene density, retrotranspo-
sition and replication timing) are linked to regional GC composition, but there
is still need for an adequate “isochore theory” that explains genome organi-
zation in terms of isochores. A main difficulty in assessing the role of iso-
chores in mammalian genome analysis has been the lack of a widely accepted
generative (as opposed to descriptive) model. In our opinion, such a falsifi-
able model is necessary for a useful scientific discussion, and would open up
the path to meaningful hypothesis testing procedures. Refutation attemps [10,
11, 14] have been rebuked on the basis that the employed statistical models
do not adequately capture the true nature of isochores [9, 12]. On the other
hand, proponents of the theory largely relied on ad hoc segmentation proce-
dures [2, 13], which result in useful genome annotations, but make it difficult
to assess statistical validity. We intend to continue our work toward an ade-
quate isochore model, by incorporating positional dependence and other essential
features.

We hope that our model and the associated computational results will be
useful on their own for “simple” sequence analysis tasks, such as the identi-
fication of isochores or CpG islands, or as part of more sophisticated prob-
abilistic models for complicated analysis problems, such as ab initio gene
prediction.

Segmentation with an Isochore Distribution 399

References

1. Karlin, S.: Statistical signals in bioinformatics. Proc. Nat’l Acad. Sci. USA 102
(2005) 13355–13362

2. Li, W., Bernaola-Galván, P., Haghighi, F., Grosse, I.: Applications of recursive seg-
mentation to the analysis of DNA sequences. Comput. Chem. 26 (2002) 491–510

3. Mathé, C., Sagot, M.F., Schiex, T., Rouzé, P.: Current methods of gene prediction,
their strengths and weaknesses. Nucleic Acids Res. 30 (2002) 4103–4117

4. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proc. IEEE 77 (1989) 257–286

5. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis.
Cambridge University Press, UK (1998)

6. Fu, Y.X., Curnow, R.N.: Maximum likelihood estimation of multiple change points.
Biometrika 77 (1990) 563–573

7. Csűrös, M.: Maximum-scoring segment sets. IEEE/ACM Trans. Comput. Biol.
Bioinf. 1 (2004) 139–150

8. Bernardi, G., Olofsson, B., Filipski, J., Zerial, M., Salinas, J., Cuny, G., Meunier-
Rotival, M., Rodier, F.: The mosaic genome of warmblooded vertebrates. Science
228 (1985) 953–958

9. Bernardi, G.: Misunderstandings about isochores: Part I. Gene 276 (2001) 3–13
10. IHGSC: Initial sequencing and analysis of the human genome. Nature 409 (2001)

860–921
11. Cohen, N., Dagan, T., Stone, L., Graur, D.: GC composition of the human genome:

in search of isochores. Mol. Biol. Evol. 22 (2005) 1260–1272
12. Clay, O., Bernardi, G.: How not to look for isochores: A reply to Cohen et al. Mol.

Biol. Evol. 22 (2005) 2315–2317
13. Constantini, M., Clay, O., Auletta, F., Bernardi, G.: An isochore map of the human

genome. Genome Res. 16 (2006) 536–541
14. Eyre-Walker, A., Hurst, L.D.: The evolution of isochores. Nat. Rev. Genet. 2

(2001) 549–555
15. Szpankowski, W., Ren, W., Szpankowski, L.: An optimal DNA segmentation based

on the MDL principle. Int. J. Bioinformatics Research and Applications 1 (2005)
3–17

16. Barry, D., Hartigan, J.A.: Product partition models for change point problems.
Ann. Statist. 20 (1992) 260–279

17. Auger, I.E., Lawrence, C.E.: Algorithms for the optimal identification of segment
neighborhoods. Bull. Math. Biol. 51 (1989) 39–54

18. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. Ann. Statist. 11 (1983) 416–431

19. Tarnas, C., Hughey, R.: Reduced space hidden markov model training. Bioinfor-
matics 14 (1998) 401–406

20. Grimwood, J., et al.: The DNA sequence and biology of human chromosome 19.
Nature 428 (2004) 529–535

21. Karolchik, D., Baertsch, R., Diekhans, M., Furey, T.S., Hinrichs, A., Lu, Y.T.,
Roskin, K.M., Schwartz, M., Sugnet, C.W., Thomas, D.J., Weber, R.J., Haussler,
D., Kent, W.J.: The UCSC genome browser database. Nucleic Acids Res. 31
(2003) 51–54

22. Klein, R.J., Misulovin, Z., Eddy, S.R.: Noncoding RNA genes identified in AT-rich
hyperthermophiles. Proc. Nat’l Acad. Sci. USA 99 (2002) 7542–7547

Author Index

Abul, Osman 197
Agarwal, Pankaj K. 207
Albrecht, Andreas A. 252
Alves, Carlos E.R. 186

Barral, Yves 1
Bergeron, Anne 163
Berman, Piotr 138, 344
Blum, Christian 355
Böcker, Sebastian 12
Brinza, Dumitru 286
Burger, Lukas 44

Cai, Liming 68, 262
Chan, M.Y. 56
Chan, Wun-Tat 56
Cheng, Ming-Te 388
Chin, Francis Y.L. 56
Conner, Glenn 162
Csűrös, Miklós 388

Darling, Aaron E. 126
de Carvalho Jr., Sérgio A. 321
Deng, Zhidong 242
do Lago, Alair Pereira 186
Drabløs, Finn 197

Eidsheim, Lars Andreas 197

Friberg, Markus T. 1
Fung, Stanley P.Y. 56

Gambin, Anna 32
Gonnet, Gaston H. 1
Gonnet, Pedro 1
Gramm, Jens 92
Grimm, Andreas 388

Halawani, Amine 388
Hartman, Tzvika 92
Hein, Jotun 103
Hollan, Barbara 162
Hong, Eun-Jong 219
Hou, Minmei 138

Huber, Katharina T. 162
Huson, Daniel H. 150

Ilinkin, Ivaylo 115
Isom, Adam 115

Janardan, Ravi 115
Jenkins, Paul 103

Kao, Ming-Yang 56
Karczmarski, Jakub 32
Keijsper, Judith 80
Kelk, Steven 80
Klau, Gunnar W. 298
Kluge, Bogus�law 32
Kuiken, Carla 126

Landreau, Perrine 388
Letzel, Matthias C. 12
Li, Ming 231
Li, Shuai Cheng 231
Ligeti, Péter 174
Lin, Yu 310
Lipták, Zsuzsanna 12
Liu, Chunmei 68
Liu, Xiaowen 310
Lozano-Pérez, Tomás 219
�Luksza, Marta 32
Lyngsø, Rune 103

Malmberg, Russell L. 68, 262
Messeguer, Xavier 126
Miklós, István 174
Miller, Webb 138
Mixtacki, Julia 163
Moulton, Vincent 162

Nedland, Magnar 197
Nierhoff, Till 92

Ostrowski, Jerzy 32

Paige, Timothy Brooks 174
Parida, Laxmi 376
Perna, Nicole T. 126
Pervukhin, Anton 12
Phillips, Jeff M. 207
Pinter, Ron Y. 274

402 Author Index

Rahmann, Sven 298, 321

Rokhlenko, Oleg 274
Rudolph, Johannes 207
Ruppin, Eytan 274

Sandve, Geir Kjetil 197

Schraudolph, Nicol N. 1
Sharan, Roded 92, 274
Shlomi, Tomer 274
Skaliotis, Alexandros 252

Song, Dandan 242
Song, Yinglei 68
Song, Yixu 24
Steel, Mike A. 150

Steinhöfel, Kathleen 252
Stelling, Jörg 333
Stojanovic, Nikola 344
Stougie, Leen 80

Stoye, Jens 163
Syrstad, Øyvind Bø 197

Tantau, Till 92
Terzer, Marco 333
Treangen, Todd J. 126
Tsur, Dekel 366

Vallès, Mateu Yábar 355
van Iersel, Leo 80
van Nimwegen, Erik 44
Vellozo, Augusto F. 186

Wang, Jiaxin 24
Wang, Lusheng 310
Whitfield, Jim 150

Yang, Zehong 24
Ye, Jieping 115

Zelikovsky, Alexander 286
Zhang, Louxin 126, 138
Zhao, Jizhen 262
Zhu, Hongmei 24

	Frontmatter
	Measures of Codon Bias in Yeast, the tRNA Pairing Index and Possible DNA Repair Mechanisms
	Decomposing Metabolomic Isotope Patterns
	A Method to Design Standard HMMs with Desired Length Distribution for Biological Sequence Analysis
	Efficient Model-Based Clustering for LC-MS Data
	A Bayesian Algorithm for Reconstructing Two-Component Signaling Networks
	Linear-Time Haplotype Inference on Pedigrees Without Recombinations
	Phylogenetic Network Inferences Through Efficient Haplotyping
	Beaches of Islands of Tractability: Algorithms for Parsimony and Minimum Perfect Phylogeny Haplotyping Problems
	On the Complexity of SNP Block Partitioning Under the Perfect Phylogeny Model
	How Many Transcripts Does It Take to Reconstruct the Splice Graph?
	Multiple Structure Alignment and Consensus Identification for Proteins
	Procrastination Leads to Efficient Filtration for Local Multiple Alignment
	Controlling Size When Aligning Multiple Genomic Sequences with Duplications
	Reducing Distortion in Phylogenetic Networks
	Imputing Supertrees and Supernetworks from Quartets
	A Unifying View of Genome Rearrangements
	Efficient Sampling of Transpositions and Inverted Transpositions for Bayesian MCMC
	Alignment with Non-overlapping Inversions in {\itshape O}({\itshape n}<Superscript>3</Superscript>)-Time
	Accelerating Motif Discovery: Motif Matching on Parallel Hardware
	Segmenting Motifs in Protein-Protein Interface Surfaces
	Protein Side-Chain Placement Through MAP Estimation and Problem-Size Reduction
	On the Complexity of the Crossing Contact Map Pattern Matching Problem
	A Fuzzy Dynamic Programming Approach to Predict RNA Secondary Structure
	Landscape Analysis for Protein-Folding Simulation in the H-P Model
	Rapid {\itshape ab initio} RNA Folding Including Pseudoknots Via Graph Tree Decomposition
	Flux-Based {\itshape vs.} Topology-Based Similarity of Metabolic Genes
	Combinatorial Methods for Disease Association Search and Susceptibility Prediction
	Integer Linear Programs for Discovering Approximate Gene Clusters
	Approximation Algorithms for Bi-clustering Problems
	Improving the Layout of Oligonucleotide Microarrays: Pivot Partitioning
	Accelerating the Computation of Elementary Modes Using Pattern Trees
	A Linear-Time Algorithm for Studying Genetic Variation
	New Constructive Heuristics for DNA Sequencing by Hybridization
	Optimal Probing Patterns for Sequencing by Hybridization
	Gapped Permutation Patterns for Comparative Genomics
	Segmentation with an Isochore Distribution
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

